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Fig. 1. Multi-Motion Segmentation with a monocular event camera on an EV-IMO dataset sequence. Top Row: The event frames are color-coded by
cluster membership. The corresponding grayscale frames are shown in the bottom row. Bounding boxes on the images are color coded with respect to the
objects for reference. Note that grayscale images are not used for computation and are provided for visualization purposes only. All the images in this
paper are best viewed in color.

Abstract— Segmentation of moving objects in dynamic scenes
is a key process in scene understanding for navigation tasks.
Classical cameras suffer from motion blur in such scenarios
rendering them effete. On the contrary, event cameras, because
of their high temporal resolution and lack of motion blur,
are tailor-made for this problem. We present an approach
for monocular multi-motion segmentation, which combines
bottom-up feature tracking and top-down motion compensation
into a unified pipeline, which is the first of its kind to our
knowledge. Using the events within a time-interval, our method
segments the scene into multiple motions by splitting and
merging. We further speed up our method by using the concept
of motion propagation and cluster keyslices.

The approach was successfully evaluated on both challenging
real-world and synthetic scenarios from the EV-IMO, EED, and
MOD datasets and outperformed the state-of-the-art detection
rate by 12%, achieving a new state-of-the-art average detection
rate of 81.06%, 94.2% and 82.35% on the aforementioned
datasets. To enable further research and systematic evaluation
of multi-motion segmentation, we present and open-source
a new dataset/benchmark called MOD++, which includes
challenging sequences and extensive data stratification in-terms
of camera and object motion, velocity magnitudes, direction,
and rotational speeds.
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SUPPLEMENTARY MATERIAL

The accompanying video and dataset are available at prg.
cs.umd.edu/0-MMS.html.

I. INTRODUCTION

Navigation is a fundamental competence of life with visual
motion estimation as its beating heart [1], [2]. Even though
motion estimation has seen a tremendous advancement in
the last few decades, dynamic object motion is usually
addressed by outlier rejection schemes as a part of the mature
structure from motion and SLAM pipelines [3]. Though, this
can provide an initial dynamic object segmentation, further
processing for each segment relies on some prior information
(commonly appearance/structure/recognition).

To exacerbate the scenario further, classical imaging
cameras often fail in dynamic scenarios (moving objects)
due to motion blur and low light scenarios. To this end,
drawing inspiration from nature, neuromorphic engineers
developed a sensor called Dynamic Vision Sensor (DVS)
[4] which records the asynchronous temporal changes in
the scene in the form of a stream of events, rather than
the conventional image frames. This gives an unparalleled
advantage in-terms of temporal resolution, low latency, and
low band-width signals. Such event data is tailor-made for
motion segmentation because of the disparity in event density
at object boundaries.

In this paper, we present a method to detect moving objects
by inferring their motion using a monocular event camera;
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we call this multi-motion segmentation. We formally define
the problem statement and our contributions next.

A. Problem Formulation and Contributions
We address the following question: How do you cluster

the scene into background and Independently Moving
Objects (IMOs) based on motion using data from a moving
monocular event camera?

Given an event volume E , we find and cluster the events
based on 2D motion. We over-segment the scene with the
help of feature tracks and then merge clusters based on
the motion models and a contrast score. Each cluster is
represented by a four parameter motion model (denoting
the similarity transformation/warp) Θ = {Θx,Θy,Θz,Θθ}
which represents the 2D translation (Θx,Θy), divergence and
in-plane rotation, respectively [5]. To speed up computation,
we propagate these motion models until a cluster keyslice
is invoked. A summary of our contributions is given below
(Sample outputs are shown in Fig. 1):
• A novel cluster splitting and merging approach

for monocular event-based multi-motion segmentation
without prior knowledge of scene geometry (zero-shot)
and a number of objects.

• New open-source multi-motion segmentation dataset
and benchmark MOD++ including extensive
motion stratification and including challenging
collision/exploding sequences.

• Speeding up computation using motion propagation and
introduction of cluster keyslices.

B. Related Work
There has been extensive progress in the field of

event-based motion segmentation in the past decade for
different scenarios at variable scene complexity. Earlier
works focused on the case of a static camera, where the
events are generated by the moving objects, and a simple
clustering scheme can provide motion segmentation [6]–[9].
The next mark up in complexity is the case of a moving
camera, where event alignment is computed for the whole
scene [5], [10], [11] (also called sharpness or contrast
measure [12], [13]) and the parts of the scene which are
misaligned give the motion segmentation of IMOs [5] using
a simple thresholding algorithm. The results were further
improved by [14], who used an Expectation-Maximization
scheme to obtain better segmentation. Our work is closely
related to [14] with the same underlying philosophy: using
motion compensation for clustering but adds robustness in
long term segmentation using feature tracking and cluster
splitting and merging. We also introduce motion propagation
and the concept of cluster keyslices to speed-up the entire
procedure.

Finally, a few approaches used machine learning. [15]
learned object contours and border-ownership information
via a structured random forest, which they demonstrated
for segmentation. [16], [17] demonstrated a combination
of supervised and unsupervised CNN learning using
deblurring/event-alignment in the cost function, and [18]
designed a graph convolutional neural network for supervised
motion segmentation, that uses as input event volumes over
extended time periods.

II. PRELIMINARIES

A. Data From An Event Camera
A traditional camera records frames at a fixed frame

rate by integrating the number of photons for the chosen

shutter time for all pixels synchronously. In contrast, an event
camera only records the polarity of logarithmic brightness
changes asynchronously at each pixel. If the brightness at
time t of a pixel at location x is given by It,x an event
is triggered when ‖ log (It+δt,x) − log (It,x) ‖1 ≥ τ . Here,
δt is a small time increment and τ is a threshold which
will determine the trigger of an event (τ is set at the driver
level as a combination of multiple parameters). Each event
outputs the following data: e = {x, t, p}, where p = ±1
denotes the sign of the brightness change. We’ll denote
events in a spatio-temporal window as Et = {ei}Ni=1 (N
is the number of events) and we’ll refer to E as event
slice/stream/cloud/volume.

B. Model Fitting For Contrast Maximization
Processing event cloud is generally computationally very

expensive and to speed up the processing we use a projection
function. The projection of E leads to a “blurry” image, and
a number of methods for measuring this blurriness to achieve
event-cloud alignment (also called contrast maximization or
motion compensation or deblurring) have been developed
[12], [13], [19]. The output of the alignment is an event
frame denoted as Et. In particular, we utilize the method
proposed in [5] to estimate model parameters Θ to maximize
the alignment E by minimizing temporal gradients ∇T .
Here T (E) = E (tx − t0), E is the expectation/averaging
operator, tx denotes the time value at location x, and t0 is the
initial time of the temporal window. Formally, we solve the
following optimization problem: argminΘ ‖∇T ‖2, where ∇
denotes the spatial gradient operator. Note that the projection
function denoted byW is also called a warping function and
refers to the creation of Et using parameters Θ.

C. Tracklets Using Point Tracker
We rely on obtaining tracklets (feature tracks across

multiple event frames) as an input to multi-motion
segmentation. Over the past few years, robust feature
extraction and tracking approaches for event data have
been proposed [11], [20]–[23], however most of the robust
methods are relatively slow or not open-source or use
conventional intensity images. Hence, we adapt SuperPoint
[24] (previously used on grayscale images) for extracting
tracklets Tt from a set of consecutive N event frames
{Et+∆t×i|i ∈ [0, N − 1]}. We found the SuperPoint tracker
to be robust and generalizable over a wide range of scenarios
without any fine tuning. The SuperPoint tracker runs in
the backend (we call this Tracker backend) on a First-In
First-Out (FIFO) buffer of consecutive N event slices.

III. PROPOSED APPROACH

A. Overview
The proposed solution comprises of two steps: 1. Spilt and

Merge summarized in Algorithm 1 and illustrated in Fig. 2.
2. Motion Propagation and Cluster keyslices summarized in
Algorithm 2.

B. Split And Merge
Splitting: Here, the tracklets from the backend are clustered
into k clusters (k >> Num. of objects) using k-Means
clustering for its simplicity and speed. If a prior on the
number of objects or a bound is known, it can be trivially
incorporated to choose k. We denote these clusters as Ct.

Merging: Since the splitting method oversegments the
scene, we need to merge the clusters to obtain motion



Fig. 2. Overview of the proposed pipeline on a sequence from EV-IMO dataset (a) Projection of the raw event cloud Et without motion
compensation, (b) Projection of event cloud after global motion compensation (Et), (c) Sparse tracklets Ft extracted on compensated event
cloud, (d) Merged feature clusters based on contrast and distance metrics ({Ct}), (e) Output of the pipeline is the cluster of events. The
cluster membership is color coded where gray color indicating background cluster.

Algorithm 1: Splitting and Merging
Data: Tracklets Tt, Event Stream Et, Num.

oversegments K
Result: Clusters {Ct}, Cluster Models
{Θt}, Segmentation Masks {S}
Splitting;
{C̃t} = k-Means(Tt, K);
Merging;
{Θ̃t} = ClusterModelFit(Et, {C̃t});
while Stopping Criterion and All Clusters Visited do

if Ck,jD−1
k,j > ζ ( . Merging Criterion) then

{C̃t}, {Θ̃t} = MergeClusters(E , {C̃t}, {Θ̃t}) .
Updated Clusters and Motion Models;

end
end
{Ct} = {C̃t} . Final Clusters;
{Θt} = {Θ̃t} . Final Models;
S = ConvexHull({Ct}) . Final Dense Segmentation;

Algorithm 2: Motion Propagation And Cluster
Keyslices

Data: Tracklets Tt, Event Stream Et, Clusters
{Ct−1}, Cluster Models {Θt−1}

Result: Clusters {Ct}, Cluster Models {Θt}
foreach Cluster i do

E it =W(E it ,Cit−1,Θ
i
t−1) . Cluster Event frame;

end
if E(C(E it ) ∀i) > τ . Scene Contrast Measure;
then

foreach Cluster i do
if C(E it ) > χ then

Keep Propagation;
. no new cluster keyslice required;

else
Split and Merge on current cluster

(Algorithm 1);
. New cluster keyslice;

end
end

else
Split and Merge on entire scene (Algorithm 1);
. New cluster keyslice for all clusters (scene);

end

segmentation for Independently Moving Objects (IMOs) and
the background. The cluster merging is based on a similarity
measure that depends on the contrast match (warping a
cluster with the model from another cluster and measuring
the contrast) and distance between centroids of the clusters.

We define contrast and distance functions Ck,j and Dk,j
respectively as follows: Ck,j = E (‖Var (E(δEj |Θk)) ‖1) and
Dk,j = ‖Ck−Cj‖2 where k, j are the cluster numbers, δEj
represents the event volume for cluster j and Ck denotes
the centroid of cluster k. This formally entails solving the
following optimization problem: argmaxj Ck,jD−1

k,j which
simultaneously maximizes the contrast and minimizes the
distance. This step is iteratively performed per cluster (where
merging happens with every neighboring cluster using breath
first search) until a stopping criterion has been reached. The
entire process is repeated until all the clusters have been
visited. The stopping criterion is explained next.

After each merging operation, we compute the motion
model Θk,j of the merged clusters by minimizing the
temporal gradients ∇T . Intuitively, when two clusters are
merged, the combined motion model captures the average
motion of the two clusters thereby slightly increasing the
average temporal gradients. Further, whenever a moving
object cluster is merged with the background or different
IMO cluster the average temporal gradient increases
drastically. Hence, a difference in temporal gradient at
every step i (E (‖∇Ti‖2)) with respect to the initial step
(E (‖∇T0‖2)) is computed. If at any step the difference in
temporal gradient is large, we terminate the current merge
and continue to the next iteration until all the clusters
have been visited. This is mathematically described by
‖E (‖∇Ti‖2)−E (‖∇T0‖2) ‖1 ≥ λ, where λ is some constant
threshold.

After split and merge has been performed, we obtain
the final clusters {Ct} ({} indicates a set of clusters and
each cluster can be indexed with a superscript, i.e., Cit
for ith cluster) and motion models per cluster Θi

t where i
indexes the cluster number. Optionally, we obtain the dense
segmentation by taking the convex hull of the sparse feature
points in each cluster, which is denoted as S. Refer to
Algorithm 1 for a summary of split and merge methods.

C. Motion Propagation
Optimizing the parameters Θ at every time step to

obtain Et from Et is computationally exorbitant. Inspired
by classical tracking pipelines, we propagate motion models
from previous to current time slice assuming linear event
trajectories. The propagation is achieved using tracklets,
and we validate the propagation quality using the following
contrast function Ct = E (‖Var (E(δEt|Θt−1)) ‖1). Here, Ct
measures the deviation from the current optimal motion
model with respect to the motion model of the previous time
slice.

D. Speeding-Up Computation Using Cluster Keyslices
Classical Visual Odometry pipeline utilizes the concept

of keyframes to speed-up computation based on certain
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Fig. 3. Velocity vectors vCAM and vIMO
i used for data stratification

in the MOD++ dataset.

conditions, this avoids performing bundle adjustment on
every frame whilst maintaining good accuracy. We employ a
similar strategy of keyframes for event slices, which we call
a keyslice, for re-clustering based on contrast function Ct. We
apply the contrast function at different levels starting from
the entire scene to each clusters separately. Depending on the
following two measures the split and merge procedures are
performed either per cluster or on the entire scene: 1. Cluster
contrast score, 2. Scene contrast score. The cluster contrast
score is defined by Ct when applied to a single cluster during
motion propagation and the average of all cluster scores is
called the scene contrast score. Refer to Algorithm 2 for a
summary of motion propagation and cluster keyslicing.

IV. MOD++ DATASET/BENCHMARK

Currently, three main datasets exist for IMO segmentation
using event cameras, namely, Extreme Event Dataset (EED)
[5] and EV-IMO [17] featuring real data and the synthetic
Moving Object Dataset (MOD) [16]. However none of the
datasets have data stratification based on camera and/or
object motion and/or velocities. To this end, we extend the
MOD dataset presented in [16] which we call MOD++ to
add additional synthetic sequences (Refer to Table I). This
data stratification is explained next. Let the instantaneous
velocity of the center of mass of the camera and IMOs be
denoted as vCAM and vIMO

i , where i is the IMO index (Fig. 3).
Now consider the angle and relative-magnitude between two
vectors (a, b) denoted by θ and η respectively and defined
as follows: θ (a, b) = cos−1

(
a·b
‖a‖‖b‖

)
and η (a, b) = ‖a‖

‖b‖ .
Also, let the instantaneous rotational velocity around it’s
principal axes be denoted by ω where the superscripts and
subscripts have the same meaning as that of linear velocities.
We classify the sequences as follows: 1. Different linear
velocities: Here we set the instantaneous rotational velocity
close to zero, i.e.,

∥∥ωCAM
∥∥ ≈ 0 and

∥∥ωIMO
i

∥∥ ≈ 0. We
classify the motions based on relative angle and speed. If
θ
(
vCAM, vIMO

i

)
∈ [0, 45]◦∀i we call this sequence small

angle. If θ
(
vCAM, vIMO

i

)
∈ [60, 120]◦∀i we call this sequence

medium angle and if θ
(
vCAM, vIMO

i

)
∈ [140, 180]◦∀i we call

this sequence large angle. (Note that we wrap the angles in
the range [0, 180] in our case).

If η
(
vIMO, vCAM

i

)
∈ [0.5, 3.0) ∀i we call this sequence

slow. If η
(
vIMO, vCAM

i

)
∈ [3.0, 7.0) ∀i we call this sequence

medium and if η
(
vIMO, vCAM

i

)
∈ [7.0, 10.0] ∀i we call this

sequence fast.
If
∥∥ωCAM − ωIMO

i

∥∥ ∈ [0, 5]◦s−1∀i we call this sequence
slow rotation. If

∥∥ωCAM − ωIMO
i

∥∥ ∈ [25, 30]◦s−1∀i we call
this sequence medium rotation and if

∥∥ωCAM − ωIMO
i

∥∥ ∈
[90, 100]◦s−1∀i we call this sequence fast rotation.

Fig. 4. Qualitative Evaluation of our method on three datasets.
Top two rows: EV-IMO dataset, Bottom two rows: MOD dataset.
Insets show the corresponding grayscale/RGB images for reference.
The cluster membership is color coded where gray color indicates
background cluster. Bounding boxes on the images are color coded
with respect to the objects for reference.

To make it easy to identify the sequence we use the
following naming convention: SeqSEQNUM ATTR1 ATTRN
where SEQNUM is the sequence number which will determine
the scene setup (room walls and objects with texture), ATTR1
to ATTRN are modifiers which specify speed and/or rotation
classifications. We use the following modifiers: AS, AM,
AL for small, medium and large angles, SS, SM, SL
for small, medium and large linear speeds, RS, RM, RL
for small, medium and large rotational speeds. For eg.,
Seq4 AM SL RS would be the fourth sequence with medium
angles, large linear speeds and small rotational speeds.

Additionally, we also provide two challenge sequences for
researchers to evaluate their algorithm on: Cube and Cup.
The Cube sequence is two cubes (a smaller cube on top of a
larger cube) falling on the ground and breaking into smaller
non-cube pieces. The Cup sequence is a bullet hitting a cup
and shattering it into smaller fragments of different shapes.

V. EXPERIMENTS AND RESULTS

We evaluate our approach on publicly available real
and synthetic datasets. We demonstrate our approach’s
performance both qualitatively and quantitatively employing
two different metrics based on the availability of groundtruth
information.

A. Detection Rate
For datasets which provide timestamped bounding boxes

for the objects, we consider the prediction as success
when the estimated bounding box fulfills two conditions;
(1) it has a overlap of more than atleast 50% with the
groundtruth bounding box, (2) the area of intersection with
the groundtruth box is higher than the intersection with
outside area. We can formulate the metric as:

Success if D ∩ G > 0.5 and (D ∩ G) > (¬G ∩ D) (1)



TABLE I
OVERVIEW OF RELATED DATASETS.

MOD++ EV-IMO [17] EED [5] MOD [16]
Year 2020 2019 2018 2019

Data-type Simulated Real Real Simulated
Camera Sim. DAVIS346C DAVIS346C DAVIS240B Sim. DAVIS346C

Data

Events
RGB Images @ 1000 Hz

6-DoF Camera Poses @ 1000 Hz
6-DoF IMO Poses @ 1000 Hz

IMO Bounding Boxes @ 1000 Hz
IMO Masks @ 1000 Hz
Optical Flow @ 1000 Hz

Depth @ 1000 Hz

Events
Grayscale Images @ 40 Hz

6-DoF Camera Poses @ 200 Hz
6-DoF IMO Poses @ 200 Hz

IMO Masks @ 40 Hz

Events
Grayscale Images @ 20 Hz

IMO Bounding Boxes @ 20 Hz

Events
RGB Images @ 1000 Hz

6-DoF Camera Poses @ 1000 Hz
6-DoF IMO Poses @ 1000 Hz

IMO Bounding Boxes @ 1000 Hz
IMO Masks @ 1000 Hz

Poses Ground
Truth (Acc.) Blender® Engine (Sub. mm) 12 × Vicon®

Vantage V8 Cameras (≈ 1mm) – Blender® Engine (Sub. mm)

IMO Bounding Boxes
(Masks) Ground Truth

Blender® Engine
for both

Scanned 3D Objects
projected using

Ground Truth Pose
Hand-labelled (–) Blender® Engine

for both
Num. Sequences 43 30 5 7

Num. Unique Objects
(Max. Number of Objects

in frame)
12 (9) 4 (3) 7 (3) 9 (3)

Num. Backgrounds 11 5 5 9
Challenging Scenes Exploding and Breaking objects Fast camera motion Extreme illumination –

Data Stratification
Velocity Direction

Velocity Magnitude
IMO Rotation Magnitude

– – –

whereD is the predicted mask and G is the groundtruth mask.
We evaluate our pipeline’s performance on all the datasets
using this metric. We obtain the bounding box for our method
by obtaining the convex hull on the cluster of events. For
comparison purpose we evaluate the performance of [5] using
the same metric on all the three datasets. For datasets with
more than one sequence, we compute the average of each
model’s performance on individual sequences.

B. Intersection Over Union (IoU)
IoU is one the most common and henceforth the most

standard measure to evaluate and compare the performance
of different segmentation methods. IoU is given by:

IoU = (D ∩ G) / (D ∪ G)

Our method outputs a cluster of events which are associated
with an object. For the purpose of comparison we convert
the sparse mask to a dense mask by assigning all the points
lying inside the cluster as the same value.

C. Discussion of Results
Table II reports results on our proposed MOD++ dataset.

We pick eight scenarios with different relative (camera and
IMO) velocity direction, velocity magnitude and rotation
magnitude. We illustrate the merits of split and merge,
and motion propagation through extensive ablation studies
and compare with previous approaches. Our approach
outperforms others by at least ∼10% . Executing split and
merge at every step offers better accuracy than propagating
motion models (evident for more challenging scenarios
like slow relative motion, large/small relative velocity
direction and/or small rotation magnitude). However, motion
propagation offers a speed-up without a significant loss
of performance (∼1%). Even though simple thresholding
[5] and the deep learning-based approach [16] offer better
speed-up and Speed×Avg. DR (a metric proposed in [26]),
their accuracies are almost 2-3× lower than our approach
and is not reliable in challenging scenarios. We leave the
speeding-up of our approach using deep learning to enable
deployment on mobile robots for future work.

Table III reports the result of our method in comparison
with two state-of-the-art IMO detection methods [5],
[14] using only a monocular event camera. Our method
outperforms the previous methods by up to ∼12% detection

rate. Specifically, we outperform [5] by a large margin (up
to ∼32%) on all the three datasets. Our approach is about
2× faster than [14] because of motion propagation while
maintaining similar/slightly better accuracy on EED.

Table IV reports the comparison with two deep learning
methods for IMO segmentation [17] and [16] using
the IoU metric. [16] was trained on the MOD dataset
and is tested here on the EV-IMO dataset without any
fine-tuning/re-training. We outperform [16] and [17] (which
was trained on EV-IMO) on the EV-IMO dataset.

Fig. 4 shows qualitative results of our approach on the two
datasets (top two rows show results for the EV-IMO dataset
and the last two rows show results for the MOD dataset).
Gray areas in the event images show the background cluster
and red/blue colored regions show the differently segmented
IMOs. The outputs show the robustness of our approach
to shape, size and speed of the objects and in-variance
with respect to camera motion. Also, note that the objects
are sometimes very hard to detect in the corresponding
grayscale/RGB frames in Fig. 4 motivating the use of event
cameras for IMO detection using motion cues.

We obtain the ground truth IMO by counting ground truth
labels with IoU overlap ≤0.2. The graph shows robustness of
our approach with increasing number of moving segments.
The predicted number of segments closely matches the
ground truth. Segmenting solely based on motion with
a monocular event-camera is ambiguous in challenging
scenarios and results could be improved with incorporation
of depth and appearance information in our split and merge
step which we believe is the logical next step for future work.

Figs. 5a and 5b show the output of our method for
challenging sequences of Gnome shooting and Mug
shooting from [25] showing that our method performs
well even on real sequences with a large number of objects.

Fig. 6 shows performance of our algorithm with the respect
to number of moving segments across time on challenge
sequences of MOD++ dataset i.e., Cube and Cup sequence
(shown in Figs. 5c and 5d).

Our algorithm runs on a hybrid CPU and GPU system (i7
CPU and NVIDIA Titan Xp GPU). Model fitting and feature
extractions are run on GPU in parallel. Even though our core
algorithm runs fast, the bottleneck is in the memory transfer
to and from the GPU. The complexity of our approach
is linear in the number of clusters, events and frequency



Fig. 5. Multi-Motion Segmentation on the real sequences from [25]. (a) Gnome shooting: Gnome statue getting shot by a bullet, (b) Mug shooting:
Mug getting shot by a bullet. Challenge sequences from the proposed MOD++ dataset. (c) Cube breaking into smaller pieces by falling, and (d) Cup
getting shot by a bullet. The event frames are colored by cluster membership with gray showing background cluster. Note that the corresponding RGB
frames are not used for computation and are provided for visualization purposes only.

TABLE II
COMPARISON WITH STATE-OF-THE-ART USING THE DETECTION RATE FOR DIFFERENT SEQUENCES OF MOD++.

Method Detection Rate (DR in %) ↑ Speed ↑ Speed×Avg. DR ↑AS SM RS AM SM RS AL SM RS AM SS RS AM SL RS AL SS RS AL SS RM AL SS RL (MEv/s)
Mitrokhin et al. [5] 35.24 32.29 38.12 28.78 43.28 24.56 32.29 39.65 5.41 185.47
EVDodgeNet [16] 42.25 46.94 53.23 37.81 61.72 46.13 43.50 52.38 10.01 480.42
k-Means (k=5) 44.89 47.73 49.35 40.17 59.52 42.19 45.71 55.83 1.07 51.54
k-Means (k=10) 60.36 64.87 59.27 47.73 65.78 48.92 54.74 58.47 1.02 58.66
k-Means (k=20) 56.1 62.28 58.01 45.25 61.25 44.71 49.37 54.91 0.98 52.90
Ours (No Propagation) 70.13 73.29 72.58 65.80 85.76 66.24 72.90 79.02 0.83 60.77
Ours 69.52 73.94 71.27 63.58 84.21 64.93 71.18 78.37 1.16 83.67

TABLE III
COMPARISON WITH STATE-OF-THE-ART USING DETECTION RATE FOR

EED, MOD, EV-IMO DATASETS.

Method Detection rate for dataset (%) ↑ Speed ↑
EED MOD EV-IMO (MEv/s)

Mitrokhin et al. [5] 88.93 70.12 48.79 5.41
Stoffregen et al. [14] 93.17 - - 0.64∗ (Nl=10)

Ours 94.2 82.35 81.06 1.16
∗Results taken directly from [14]

TABLE IV
COMPARISON WITH STATE-OF-THE-ART USING IOU FOR EV-IMO.

Method IoU
EV-IMO [17] 77.00∗

EVDodgeNet [16] 65.76
Ours 80.37

∗Results taken directly from [17] in which boxes and wall are used for training.
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Fig. 6. Number of moving segments vs. frame number (time) on challenge
sequences of MOD++: (a) Cube, (b) Cup.

of cluster keyslices initiation. Table II shows the speed
of our algorithm in comparison with other approaches in
Million Events per second (MEv/s). Our motion propagation
and keyslicing provides a speed-up of upto 40% without

compromising accuracy.

VI. CONCLUSIONS AND FUTURE WORK

We presented a method for multi-motion segmentation
using data from a monocular event camera. Our approach
works by splitting the scene into smaller motions and
then iteratively merging them based on a contrast
measure. To our knowledge, this is the first approach
for monocular independent motion segmentation which
combines a bottom-up feature tracking and top-down motion
compensation into a unified pipeline. We further speed up
our method by using the concept of motion propagation and
cluster keyslices.

A comprehensive qualitative and quantitative evaluation
is provided on three challenging event motion segmentation
datasets, namely, EV-IMO, EED and MOD showcasing the
robustness of our approach. Our method outperforms the
previous state-of-the-art approaches by upto ∼12% detection,
thereby achieving the new state-of-the-art on the three
aforementioned datasets. To accelerate further research in
this area, we present and open-source a new benchmark
dataset MOD++ which includes challenging scenes such as
cube breaking and a mug getting shot by a bullet along with
extensive data stratification in-terms of camera and object
motion, velocity magnitudes, direction and rotational speeds.
We achieve 73.21% detection rate on MOD++ which is 2 to
3× higher than the state-of-the-art methods.
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[1] Cornelia Fermüiiller. Navigational preliminaries. Active Perception,
1:103–150, 1993.

[2] Nitin J Sanket, Chahat Deep Singh, Kanishka Ganguly, Cornelia
Fermüller, and Yiannis Aloimonos. Gapflyt: Active vision based
minimalist structure-less gap detection for quadrotor flight. volume 3,
pages 2799–2806. IEEE, 2018.

[3] Huai-Jen Liang, Nitin J Sanket, Cornelia Fermüller, and Yiannis
Aloimonos. Salientdso: Bringing attention to direct sparse
odometry. IEEE Transactions on Automation Science and Engineering,
16(4):1619–1626, 2019.

[4] Patrick Lichtsteiner, Christoph Posch, and Tobi Delbruck. A 128× 128
120 db 15µs latency asynchronous temporal contrast vision sensor.
IEEE journal of solid-state circuits, 43(2):566–576, 2008.

[5] Anton Mitrokhin, Cornelia Fermüller, Chethan Parameshwara, and
Yiannis Aloimonos. Event-based moving object detection and
tracking. IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS),
2018.

[6] M. Litzenberger, C. Posch, D. Bauer, A. N. Belbachir, P. Schon,
B. Kohn, and H. Garn. Embedded vision system for real-time object
tracking using an asynchronous transient vision sensor. In IEEE 12th
Digital Signal Processing Workshop and 4th IEEE Signal Processing
Education Workshop, pages 173–178, 2006.

[7] Alejandro Linares-Barranco, Francisco Gómez-Rodrı́guez, Vicente
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