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Abstract— Dynamic obstacle avoidance on quadrotors
requires low latency. A class of sensors that are particularly
suitable for such scenarios are event cameras. In this paper,
we present a deep learning based solution for dodging multiple
dynamic obstacles on a quadrotor with a single event camera
and on-board computation. Our approach uses a series of
shallow neural networks for estimating both the ego-motion
and the motion of independently moving objects. The networks
are trained in simulation and directly transfer to the real
world without any fine-tuning or retraining. We successfully
evaluate and demonstrate the proposed approach in many
real-world experiments with obstacles of different shapes and
sizes, achieving an overall success rate of 70% including objects
of unknown shape and a low light testing scenario. To our
knowledge, this is the first deep learning – based solution to
the problem of dynamic obstacle avoidance using event cameras
on a quadrotor. Finally, we also extend our work to the pursuit
task by merely reversing the control policy, proving that our
navigation stack can cater to different scenarios.

SUPPLEMENTARY MATERIAL

The accompanying video, supplementary material, code
and dataset are available at http://prg.cs.umd.edu/
EVDodgeNet

I. INTRODUCTION AND PHILOSOPHY

The never-ending quest to understand and mimic
ultra-efficient flying agents like bees, flies, and birds has
fueled the human fascination to create autonomous, agile
and ultra-efficient small aerial robots. These robots are not
only utilitarian but are much safer to operate in static or
dynamic environments and around other agents as compared
to their larger counterparts. Need for creation of such small
aerial robots has given rise to the development of numerous
perception algorithms for low latency obstacle avoidance.
Here, latency is defined as the time the robot takes to
perceive, interpret and generate control commands [1].

Low latency static obstacle avoidance has been studied
extensively in the last decade [2]. Recently, however,
dynamic obstacle avoidance has gained popularity in the field
of robotics due to the exponential growth of event cameras.
These are bioinspired vision sensors that output per-pixel
temporal intensity differences caused by relative motion with
microsecond latency [3].

Event cameras have the potential to become the de-facto
standard for visual motion estimation problems due to their
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Fig. 1. (a) A real quadrotor running EVDodgeNet to dodge two
obstacles thrown at it simultaneously. (b) Raw event frame as seen from
the front event camera. (c) Segmentation output. (d) Segmentation flow
output which includes both segmentation and optical flow. (e) Simulation
environment where EVDodgeNet was trained. (f) Segmentation ground truth.
(g) Simulated front facing event frame. All the images in this paper are best
viewed in color.

inherent advantages of low latency, high temporal resolution,
and high dynamic range [4]. These advantages make event
cameras tailor made for dynamic obstacle avoidance.

In this paper, we present a framework to dodge multiple
unknown dynamic obstacles on a quadrotor with event
cameras using deep learning. Although dynamic obstacle
detection using traditional cameras and deep learning has
been extensively studied in the computer vision community
under the umbrellas of object segmentation and detection,
they are either of high latency, computationally expensive
(not enough to be used on micro/nano-quadrotors) and/or
do not generalize to novel objects without retraining or
fine-tuning.

Our work is closely related to [1] with the key difference
being that our approach uses deep learning and generalizes to
unknown real objects after being trained only on simulation.
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A. Problem Formulation and Contributions

A quadrotor moves in a static scene with multiple
Independently Moving dynamic Objects/obstacles (IMOs).
The quadrotor is equipped with a front facing event camera,
a downfacing lower resolution event camera coupled with
sonar, for altitude measurements, and an IMU.

The problem we address is as follows: Can we present an
AI framework for the task of dodging/evading/avoiding these
dynamic obstacles without any prior knowledge, using only
on-board sensing and computation?

We present various flavors of the dodging problem,
such as hovering quadrotor dodging unknown obstacles,
slow-moving quadrotor dodging unknown shaped obstacles
given a bound on size, hovering and slow moving quadrotor
dodging known objects (particularly targeted to spherical
objects of known radii). We extend our approach by
demonstrating pursuit/intercept of a known object using the
same deep-learning framework. This showcases that our
proposed framework can be used in a general navigation
stack on a quadrotor and can be re-purposed for various
related tasks. A summary of our contributions are (Fig. 1):
• We propose and implement a network (called

EVDeBlurNet) that deblurs event frames, such that
learning algorithms trained on simulated data can
generalize to real scenes without retraining or
fine-tuning.

• We design and implement a network (called
EVSegFlowNet) that performs both segmentation
and optical flow of IMOs to obtain both segmentation
and optical flow in a single network.

• We propose a control policy based on estimated motion
of multiple IMOs under various scenarios.

• We evaluate and demonstrate the proposed approach
on a real quadrotor with onboard perception and
computation.

B. Related Work

We subdivide the related work into three parts, i.e.,
ego-motion estimation, independent motion segmentation,
and obstacle avoidance.

1) Independent Motion Detection and Ego-motion
Estimation – Two sides of the same coin: Information
from complementary sensors, such as standard cameras
and Inertial Measurement Units (IMUs), has given rise to
the field of Visual Inertial Odometry (VIO) [5], [6]. Low
latency VIO algorithms based on event cameras have been
presented in [4], [7], which use classical feature tracking
inspired methods to estimate ego-motion. Other works,
instead, try to add semantic information to enhance the
quality of odometry by adding strong priors about the scene
[8], [9]. Most works in the literature focus on ego-motion
estimation in static scenes which are seldom encountered
in the real world. To account for moving objects, these
algorithms implement a set of outlier rejection schemes to
detect IMOs. We would like to point out that by carefully
modelling these “outliers” one can estimate both ego-motion
and IMO motion [10].

2) Image stabilization as a key to independent motion
segmentation: Keen readers might have contrived that by
performing the process of image stabilization IMOs would
“stand-out”. Indeed, this was the approach most robust
algorithms used in the last two decades. A similar concept
was adapted in some recent works on event-based cameras
for detecting IMOs [11]–[13]. Recently a deep learning based
approach was presented for IMO detection using a structure
from motion inspired approach [14].

3) Obstacle avoidance on aerial robots: The works
presented in the above two subsections have aided the
advancement of obstacle avoidance on aerial robots. [15],
[16] presented approaches for high speed static obstacle
avoidance by estimating depth maps and visual servoing
using a monocular imaging camera respectively. [17]
provides a detailed collation of the prior work on static
obstacle avoidance using stereo cameras. A hardware
and software architecture was proposed in [18], [19] for
high speed quadrotor navigation by mapping the cluttered
environment using a lidar. Using event cameras for high
speed dodging is not new and the first work was presented
in [20] where an approach was presented to avoid a dynamic
spherical obstacle using stereo event cameras. Very recently,
[1] presented a detailed analysis of perception latency for
dodging a dynamic obstacle.

C. Organization of the paper

The paper is structured into perception and control
modules. The perception module (Refer to Fig. 2) is further
divided into three segments.
1. The input to the perception system are event frames
(Sec. II-A). Such a projection of event data to generate
event frames suffers from misalignment [21] unless motion
compensation is performed. We call this misalignment
or loss of contrast/sharpness as blur due to its visual
resemblance to classical image motion blur. To perform
motion compensation and denoising, we present a neural
network called EVDeBlurNet in Sec. II-A.
2. Suppl. Sec. S.III. presents how ego-motion is obtained
using EVHomographyNet.
3. Sec. II-B describes how segmentation and optical flow of
IMOs are obtained using the novel EVSegFlowNet.
Sec. III presents the control scheme for dodging given the
outputs from the perception module. We also bring the
generality of our perception stack into limelight in Suppl.
Sec. S.IX by adapting our approach to the problem of pursuit.
Sec. IV illustrates the experimental setup and provides error
analyses of the approaches presented along with detailed
ablation studies. We finally conclude the paper in Sec. V
with parting thoughts on future work.

II. DEEP LEARNING BASED NAVIGATION STACK FOR
DODGING DYNAMIC OBSTACLES

Fig. 2 shows an overview of our proposed approach. Refer
to Suppl. Sec. S.I for the coordinate frame definitions. Our
hardware setup is shown in Fig. 3.
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Fig. 2. Overview of the proposed neural network based navigation stack
for the purpose of dodging.

Fig. 3. Representation of coordinate frames on the hardware platform
used. (1) Front facing DAVIS 240C, (2) down facing sonar on PX4Flow,
(3) down facing DAVIS 240B, (4) NVIDIA TX2 CPU+GPU, (5) Intel®
Aero Compute board.

A. EVDeBlurNet

The event frame E consists of three channels. The first
and second channels contain the per-pixel average count of
positive and negative events. The third channel contains the
per-pixel average time between events (refer to Sec. S.II for
a mathematical formulation). Though event representation
offers many advantages regarding computational complexity
and providing tight time bounds on operation, there is a
hitch. Event frames can be “blurry” (projection of misaligned
events) based on a combination of the integration time δt
(observe in Fig. 6 how sharpness of the image decreases
as integration time δt increases), apparent scene movement
on the image plane (which depends on the amount of
camera movement and depth of the scene) and scene contrast
(contrast of the latent image pixels). Here, we define blur on
the event frame E as the misalignment of the events in a
small integration time δt.

An event is triggered when the relative contrast (on the
latent image I) exceeds a threshold τ and is mathematically
modelled as: ‖ log (I) ‖1 ≈ ‖〈∇x log (I) , ẋ∆t〉‖1 ≥ τ .

Here, 〈·, ·〉 denotes the inner/dot product between two
vectors, ∇x is the spatial gradient, ẋ is the motion field
on the image and ∆t is the time since the previous event
at the same location. The above equation elucidates how the
latent image contrast, motion and depth are coupled to event
frames. Note that, ẋ depends on the 3D camera motion and
the scene depth. We refer the reader to [22] for more details.

This “blurriness" of the event frame can adversely affect
the performance of algorithms built on them. To alleviate

this problem, we need to deblur the event images. This
is fairly easy if we directly use the spatio-temporal event
cloud and follow the approach described in [21]. Essentially
the problem deals with finding point trajectories along the
spatio-temporal point cloud to maximize a heuristically
chosen contrast function. Mathematically, we want to solve
the following problem: argmaxθ C (W (E , θ)). Here C is
a heuristic contrast function and θ are the parameters
of point trajectories in the spatio-temporal point cloud
according to which the events are warped and W (E , θ)
represents the event image formed by the warped events.
In our scenario, we want to model the deblurring problem
in 2D, i.e., working on E directly without the use of a
spatio-temporal point cloud so that the problem can be
solved efficiently using a 2D Convolutional Neural Network
(CNN). Such a deblurring problem using a single image
has been studied extensively for traditional cameras for
rectifying motion blurred photos. Our modified problem in
2D can be formulated as: argmaxK C (K ~ E). Here K is
the heterogeneous deblur kernel and ~ is the convolution
operator. However, estimating K directly is not constrained
enough to be learned in an unsupervised manner. Instead, we
formulate the deblurring problem inspired by Total Variation
(TV) denoising to give us the final optimization problem
as follows: argmaxE C

(
E
)

+ λ argminE D
(

E ,E
)
. Here E

represents the deblurred event frame, λ is a regularization
penalty and D represents a distance function to measure
similarity between two event frames. Note that directly
solving argmaxE C

(
E
)

yields trivial solutions of high
frequency noise.

To learn the function using a neural network we convert
the argmax operator into an argmin operator as follows:

argmin
E

−C
(

E
)

+ λD
(

E ,E
)

(1)

Refer to Suppl. Sec. III for a detailed mathematical
description of all the loss functions. Intuitively, the higher
the value of the contrast, the lower the value of the
loss function, but going away too far from the input
will penalize the loss function striking a balance between
high contrast and similarity to the input image. We call
our CNN which generates the deblurred event images
EVDeBlurNet. It takes as input E and outputs deblurred
E . The network architecture is a simple encoder-decoder
with four convolutional and four deconvolutional layers with
batch normalization (Suppl. Sec. S.V). Another benefit of
the encoder decoder’s lossy reconstruction is that it removes
stray events (which are generally noise) and retains events
corresponding to contours, thereby greatly increasing the
signal to noise ratio.

Recently, [23] also presented a method for deblurring
event frames to improve optical flow estimation via a
coupling between predicted optical flow and sharpness in
the event frame in the loss function. In contrast, our
work presents a problem-independent deblurring network
without the supervision from optical flow. We obtain “cheap”
odometry using the EVHomographyNet as described in
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Suppl. Sec. S.III which is built upon [24], [25].

B. EVSegFlowNet

The end goal of this work is to detect/segment
Independently Moving Objects (IMOs) and to dodge them.
One could fragment this problem into two major parts,
detecting IMOs, and subsequently estimating their motion
to issue a control command to move away from the IMO
in a safe manner. Let’s start by discussing each fragment.
Firstly, we want to segment the object using consecutive
event frames Et and Et+1. A simple way to accomplish this
is by generating simulated data with known segmentation
for each frame and then training a CNN to predict the
foreground (IMO)/background segmentation. Such a CNN
can be trained using a simple cross-entropy loss function:
argminpf −E (1f log (pf ) + 1b log (pb)). Here, 1f ,1b are
the indicator variables denoting if a pixel belongs to
foreground or background. They are mutually exclusive,
i.e., 1f = ¬1b and pf , pb represent the foreground and
background predicted probabilities where pf + pb = 1.
Note that each operation in the above equation is performed
per pixel, and then an average over all pixels is computed.
In the second step we want to estimate the IMO motion.
Without any prior knowledge about the IMO it is impossible
to estimate the 3D motion of the IMO from a monocular
camera (event based or traditional). To make this problem
tractable, we assume a prior about the object. More details
can be found in Sec. III.

Once we have a prior about the object, we can estimate
the 3D IMO motion using optical flow of the pixels
corresponding to the IMO on the image plane. A simple
way to obtain optical flow is to train a CNN in a supervised
manner. However, recent research has shown that these do
not generalize well to new scenes/objects [26]. A better
way is to use a self-supervised or completely unsupervised
loss function: argminẋ E (D (W (Et, ẋ) ,Et+1)). Here ẋ
is the estimated optical flow between Et 7→ Et+1 and
W is a differentiable warp function based on optical
flow and bilinear interpolation implemented using an STN.
The self-supervised flavor of this algorithm [27] utilizes
corresponding image frames instead of event frames for
the loss function but the input is still the stack of event
frames. One could utilize the two networks we talked about
previously and solve the problem of dodging, however, one
would need to run two neural networks for this purpose.
Furthermore, this method suffers from a major problem: any
unsupervised or self-supervised method can estimate rigid
optical flow (optical flow corresponding to the background
regions B) accurately but the non-rigid optical flow (optical
flow corresponding to the foreground regions F) is not very
accurate. This is an artifact because of the number of pixels
corresponding to the foreground is often far less than that
corresponding to the background, i.e., F � B. One would
have to train for a lot of iterations to obtain accurate optical
flow results on these foreground pixels which runs into the
risk of overfitting to the dataset. This defeats the promise of
self-supervised or unsupervised formulations.

To solve both the problems of complexity and accuracy, we
formulate the problem using a semi-supervised approach to
learn segmentation and optical flow at the same time, which
we call EVSegFlowNet. We call the output of the network
segmentation flow denoted by ˜̇p which is defined as follows.

˜̇px = ẋ, if 1f (x) = 1 and ˜̇px = 0, if 1b (x) = 1 (2)

One could intuit that we can obtain a noisy segmentation
for free by simple thresholding on the magnitude of ˜̇px.
To utilize the network to maximum capacity the input to
the network is the ego-motion/odometry based warped event
frame such that the background pixels in the two input event
frames are almost aligned and the only misalignment comes
from the IMOs. This ensures that the network’s capacity
can be utilized fully for learning sub-pixel accurate optical
flow for IMO regions. The input to the EVSegFlowNet is
W
(

Et, H̃4Pt

)
and Et+1. Here, H̃4Pt is transformed to EF

before warping.
A complexity analysis of EVSegFlowNet is given in

Suppl. Sec. S.VI. The success of our approach can be seen
from the experimental results. The loss function for learning
˜̇px is:

argmin
˜̇px

E
(
D
(
W
(

E ′t, ˜̇px

)
◦ 1f ,Et+1 ◦ 1f

))
+

λ1E
(
‖˜̇px ◦ 1b‖1

)
+ λ2E

(
‖˜̇px ◦ 1b‖22

)
(3)

Here, λ1 and λ2 are regularization parameters. This loss
function is essentially the image difference with elastic net
like regularization penalty. This penalty makes the network
make background flow zero fairly quickly as compared to
simple l1 or quadratic penalty whilst being robust to outliers
(errors in segmentation mask creation).

Note that all our networks were trained in simulation
and directly transfer to the real world without any
re-training/fine-tuning. We call our dataset Moving Object
Dataset (MOD). Detailed information about the dataset can
be found in Suppl. Sec. S.VII.

III. CONTROL POLICY FOR DODGING IMOS

In this section, we present a solution for evading multiple
known and/or unknown IMOs.

Let us consider three different flavors of IMOs: (i) Sphere
with known radius r, (ii) Unknown shaped objects with
known bound on the size and (iii) Unknown objects with no
prior knowledge. We tackle each of these cases differently.
Knowing the prior information about the geometric nature
helps us achieve much more robust results and fine-grain
control. We define F as the projection of all the IMOs on
the image plane such that F =

⋃
∀i Fi, where Fi denotes

the ith IMO’s image plane projection. Now, let’s discuss each
flavor of the problem separately in the following subsections.

A. Sphere with known radius r
Let us first begin with the simplest case, i.e., a single

spherical IMO with known radius r. Evading such an object
under no gravitational influence has been tackled and well
analyzed by [1]. It is known that the projection of a sphere
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on the image plane is an ellipse [28]. For spherical objects
under the gravitational influence, we estimate the initial 3D
position using the known radius information and then we
track the object over a few E to obtain the initial 3D velocity.
Here, the tracking is done by segmentation on every frame.

Assuming a classical physics model, we predict the future
trajectory XIMO

i of the sphere when it is only under the
influence of gravity. Now, we define the point XIMO

i,p as
the intersection of the trajectory XIMO

i and the image
plane. For the case of a single spherical IMO, we compute
the distance between XIMO

i,p and the initial position of
the quadrotor O, denoted by vector xmin ∈ R2×1. The
“safe” direction is represented as xs = −xmin. A simple
Proportional-Integral-Derivative (PID) controller based on
the differential flatness model of the quadrotor is used with
high proportional gain for a quick response to move in the
direction xs. The minimum amount of movement is equal to
the extended obstacle size (the size of the quadrotor is added
to the object size).

Now, let’s extend to the evasion of multiple spherical
IMOs. We assume that while objects are detected, there is no
occlusion among different IMOs in the front event camera
frame. Then, each object Fi is clustered using mean shift
clustering. For each object Fi, the 3D position and velocity
are estimated as before. It is important to note that since all
the objects were targeted at the quadrotor, they are bound
to intercept the image plane, say at point XIMO

i,p (Fig. 4).
For evasion from multiple objects, we adapt the following
approach. First, we find the two objects m and m + 1
from a consecutive cyclic pair of vectors such that (here (̂·)
represents a unit vector):

argmin
XIMO
i,p ,X

IMO
i+1,p

〈
X̂IMO
i,p , X̂

IMO
i+1,p

〉
(4)

In other words, the objects m and m + 1 forms the largest
angle among all the consecutive cyclic pairs. So we deploy a
strategy to move the quadrotor in xs direction in the image
plane such that

Fig. 4. Vectors XIMO
i,p and XIMO

i+1,p represent the intersection of the
trajectory and the image plane. xs is the direction of the “safe” trajectory.
All the vectors are defined with respect to the center of the quadrotor
projected on the image plane, O. Both of the spheres are of known radii.

xs =

{
−X̂β , if max∀i〈X̂β ,Xi〉 < max∀i〈−X̂β , X̂i〉
X̂β , otherwise

(5)
where Xβ = X̂IMO

m,p + X̂IMO
m+1,p

For unknown shaped objects with bound on size, please
refer Suppl. Sec. S.VIII.

B. Unknown objects with no prior knowledge

Without any prior knowledge about the object, it is
geometrically infeasible to obtain the 3D velocity of an
IMO using a monocular camera. However, we can predict
a possible safe trajectory xs depending on the velocity
direction of the IMOs on the image plane. We compute the
unit vector vIMO

i in which the IMO is moving by tracking
the segmentation mask of the IMO or by computing the
mean optical flow direction of the region of interest. For
a single unknown IMO, a heuristic is chosen such that the
quadrotor moves in the direction perpendicular to the velocity
of the IMO on the image plane, i.e., a safe direction for the
quadrotor motion which satisfies 〈xs,vIMO

i 〉 = 0.
For evasion from multiple objects, we adapt a similar

approach as in Sec. III-A. First, we find the two objects m
and m+ 1 from a consecutive cyclic pair of velocity vectors
by replacing X̂ by v̂ in Eq. 4. Now. we deploy a strategy
to move the quadrotor in xs direction in the image plane by
replacing X̂ by v̂ and ‘<’ by ‘>’ in Eq. 5. Refer to Suppl.
Sec. S.IX for an extension of our work to pursuit.

IV. EXPERIMENTS

A detailed description of the hardware and experimental
setup is given in Suppl. Sec. S.X.

A. Experimental Results and Discussion

In this paper, we considered the case of navigating
through different sets of multiple dynamic obstacles. We
dealt with six different evading combinations and one pursuit
experiment: (a) Spherical ball with a known radius of 140
mm, (b) car with a bound on the maximum dimension size of
240 mm (with maximum error of ∼ 20% from the original
size), (c) airplane with no prior information, (d) Bebop 2
flying at a constant velocity, (e) multiple unknown objects, (f)
pursuit of Bebop 2 and (g) low-light dodging experiment. For
each evasion case, the objects (Suppl. Fig. S.8) are directly
thrown towards the Aero quadrotor such that a collision
would definitely occur if the Aero holds its initial position.
For each case, a total of 30 trials were conducted. Notice that
the objects would have hit the quadrotor if it had not moved
from its initial position. We achieved a remarkable success
rate of 86% in cases (a) and (b), 76% in case (c). Both Parrot
Bebop 2 experiments (case (d), (f)) resulted in 83% success
rate. Case (e) was carefully performed with synchronized
throws between the two objects and resulted about 76%
success rate. For the low-light experiment (case (g)), we
achieved a success rate of 70%. Here success is defined
as both a successful detection and evasion for the evade
experiments and both a successful detection and collision
for the pursuit task. Fig. 5 shows sequences of images for
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Fig. 5. Sequence of images of quadrotor dodging or pursuing of objects. (a)-(d): Dodging a spherical ball, car, airplane and Bebop 2 respectively. (e):
Dodging multiple objects simultaneously. (f): Pursuit of Bebop 2 by reversing control policy. Object and quadrotor transparency show progression of time.
Red and green arrows indicate object and quadrotor directions respectively. On-set images show front facing event frame (top) and respective segmentation
obtained from our network (down).

TABLE I
QUANTITATIVE EVALUATION OF DIFFERENT METHODS FOR HOMOGRAPHY ESTIMATION.

Method (Loss)
RMSEi in px. RMSEo in px.

γ = ±[0, 5] γ = ±[6, 10] γ = ±[11, 15] γ = ±[16, 20] γ = ±[21, 25] γ = ±[0, 5] γ = ±[6, 10] γ = ±[11, 15] γ = ±[16, 20] γ = ±[21, 25]

Identity 3.92 ± 0.83 11.40 ± 0.70 18.43 ± 0.70 25.50 ± 0.70 32.55 ± 0.71 3.92 ± 0.84 11.40 ± 0.70 18.44 ± 0.71 25.49 ± 0.70 32.55 ± 0.71
S 3.23 ± 1.13 3.90 ± 1.34 5.31 ± 2.05 9.63 ± 4.57 17.65 ± 7.00 4.15 ± 1.78 5.05 ± 2.19 6.99 ± 3.11 11.21 ± 4.84 18.37 ± 6.61
US∗ (D1) 2.97 ± 1.22 3.84 ± 1.61 5.99 ± 2.78 11.64 ± 5.69 20.36 ± 7.68 3.92 ± 1.53 5.31 ± 2.43 8.14 ± 3.86 13.63 ± 5.87 21.22 ± 7.35
US∗ (D2) 2.48 ± 0.93 3.53 ± 1.43 5.89 ± 2.70 11.74 ± 5.69 20.51 ± 0.70 3.19 ± 1.26 4.86 ± 2.31 7.92 ± 3.73 13.47 ± 5.71 21.22 ± 7.08
DB + S 2.73 ± 1.01 3.16 ± 1.23 4.00 ± 1.79 6.50 ± 3.54 12.22 ± 6.58 3.69 ± 1.51 4.49 ± 2.10 5.91 ± 3.16 9.04 ± 4.90 14.60 ± 6.95
DB + US (D1) 2.19 ± 0.88 3.04 ± 1.57 4.99 ± 2.75 10.16 ± 5.54 18.62 ± 7.85 3.08 ± 1.37 4.63 ± 2.68 7.57 ± 4.30 13.16 ± 6.25 21.08 ± 7.49
DB + US (D2) 2.41 ± 1.06 3.30 ± 1.77 5.36 ± 3.02 10.39 ± 5.78 18.77 ± 8.07 3.35 ± 1.76 5.05 ± 3.03 8.11 ± 4.65 13.46 ± 6.48 21.08 ± 7.81

∗ Trained for 100 epochs on supervised and then fine-tuned on unsupervised for 100 more epochs. γ denotes the perturbation range in px. for evaluation.

cases (a)-(f) along with sample front facing event frame and
segmentation outputs. Vicon plots can be found in Suppl.
Fig. S.9.

Before the IMO is thrown at the quadrotor, the quadrotor
maintains its position (hover) using the differential XW

and YW estimates from the EVHomographyNet and ZW

estimates from the sonar.
When the IMO is thrown at the quadrotor, the IMO

is detected for five consecutive frames to estimate either
the trajectory or image plane velocity and to remove
outliers using simple morphological operations. This gives
a perception response lag of 60 ms (each consecutive frame
pair takes 10 ms for the neural network computation and
2 ms for the post-processing). Finally, the quadrotor moves
using the simple PID controller presented before.

Note that, we talked about obtaining both segmentation
and optical flow from EVSegFlowNet. This was based on the
conceptualization of optical flow being used for other tasks
as well. However, if only the dodging task is to be performed,
a smaller segmentation network can be used without much
loss of accuracy.

Fig. 6 shows the input and output of EVDeBlurNet for
losses D2 and D3 under δt = {1, 5, 10} ms. Observe the
amount of noise (stray events not associated with strong
contours) in the raw images (top row of Fig. 6). The
second row shows the output of EVDeBlurNet for D2 loss.
Observe that this works well for smaller integration times
but for larger integration times, the amount of denoising
and deblurring performance deteriorates. However, D3 loss
which is aimed at outlier rejection is more suppressive of

Fig. 6. Output of EVDeBlurNet for different integration time and loss
functions. Top row: raw event frames, middle row: deblurred event frames
with D2 and bottom row: deblurred event frames with D3 with δt. Left to
right: δt of 1 ms, 5 ms and 10 ms. Notice that only the major contours are
preserved and blurred contours are thinned in deblurred outputs.

weak contours and hence one can observe that the frame has
almost no output for smaller integration times. This has the
effect of working well for larger integration times.

Fig. 7 shows the output of EVHomographyNet using the
supervised loss function on both raw (top row) and deblurred
frames (bottom row). Observe that the deblurred homography
estimation is more robust to changes in different integration
times. The extended version of Table I is available in Suppl.
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Fig. 7. Output of EVHomographyNet for raw and deblurred event frames
at different integration times. Green and red color denotes ground truth and
predicted H̃4Pt respectively. Top row: raw events frames and bottom row:
deblurred event frames. Left to right: δt of 1 ms, 5 ms and 10 ms. Notice
that the deblurred homography outputs are almost not affected by δt.

TABLE II
QUANTITATIVE EVALUATION OF IMO SEGMENTATION METHODS.

Method DRi DRo Run Time FLOPs Num. Params
(Loss) in % in % in ms in M in M

SegNet 49.0 40.4 1.5 222 0.03
DB + SegNet 81.5 68.7 7.5 4900 2.33
DB + H + SegNet 83.2 69.1 10 5150 3.63
SegFlowNet 88.3 81.9 1.5 222 0.03
DB + SegFlowNet 93.3 90.1 7.5 4900 2.33
DB + H + SegFlowNet 93.4 90.7 10 5150 3.63

Sec. S.XI.) shows the quantitative evaluation of different
methods used for training EVHomographyNet. Here, DB
represents deblurring using the combination of D2 and
C2 loss, S and US refer to supervised and unsupervised
losses respectively. RMSEi and RMSEo denote the average
root mean square error [25] in the testing dataset with
textures similar to that of the training set, and completely
novel textures respectively. RMSEo quantifies how well
the network can generalize to unseen samples. Notice that
the supervised flavors of the algorithm work better (lower
RMSEi and RMSEo) than their respective unsupervised
counterparts. We speculate that this is because of the
sparsity in data and that the simple image based similarity
metrics not being well suited for event frames. We leave
crafting a novel loss function for event frames as a potential
avenue for future work. Also, notice how deblur variants
of the algorithms almost always work better than their
respective non-deblurred counterparts highlighting the utility
of EVDeblurNet.

Table II shows the quantitative results of different variants
of segmentation networks trained using the D2 loss for
SegFlowNet. Also, H denotes the stack of warped Et and
Et+1 using the outputs of the network DB + S in Table I.
Here DR denotes the detection rate and is defined as:

DR = E
(
(D ∩ G) ◦ 1E/(G ◦ 1E) ≥ τ

)
× 100% (6)

where G and D denote the ground truth and predicted
masks respectively, and 1E denotes the presence of an event
in either of the input event frames. For our evaluation,
we choose τ = 0.5. Notice that using both deblur

and homography warping helps improve the results as
anticipated. Again, DRi and DRo denote testing on trained
objects and completely novel objects. As before, deblurring
helps generalize much better to novel objects and deblurring
with homography warping gives better results showing that
the network’s learning capacity is utilized better. Also, notice
that the improvement in segmentation by warping using
homography (last row) is marginal due to the 3D structure
of the scene. The network architectures and training details
are provided in Suppl. Sec. S.V.

V. CONCLUSIONS

We presented an AI-based algorithmic design for
micro/nano quadrotors, taking into account the knowledge
of the system’s computation and latency requirements using
deep learning. The central conception of our approach is to
contrive AI building blocks using shallow neural networks
which can be re-purposed. This philosophy was used to
develop a method to dodge dynamic obstacles using only
a monocular event camera and on-board sensing. To our
knowledge, this is the first deep learning based solution
to the problem of dynamic obstacle avoidance using event
cameras on a quadrotor. Moreover, our networks are trained
in simulation and directly transfer to the real world without
fine-tuning or retraining. We also show the generalizability
of our navigation stack by extending our work to the pursuit
task. As a parting thought, a better similarity scoring metric
between event frames or a more robust construction of event
frames can improve our results.
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Supplementary Material for
EVDodgeNet: Deep Dynamic Obstacle Dodging with Event Cameras

Nitin J. Sanket1, Chethan M. Parameshwara1, Chahat Deep Singh1, Ashwin V. Kuruttukulam1,
Cornelia Fermüller1, Davide Scaramuzza2, Yiannis Aloimonos1

Figure S1. Representation of coordinate frames on the hardware platform
used. (1) Front facing DAVIS 240C, (2) down facing sonar on PX4Flow, (3)
down facing DAVIS 240B, (4) NVIDIA TX2 CPU+GPU, (5) Intel® Aero
Compute board.

S.I. DEFINITIONS OF COORDINATE FRAMES USED

The letters I , EF , ED, S and W denote coordinate
frames on the Inertial Measurement Unit (IMU), front facing
event camera, down facing event camera, down facing sonar
and the world respectively (Fig. S1). All the sensors are
assumed to be rigidly attached with the intrinsic and extrinsic
calibration between them known. A pinhole camera model
is used for the formation of the image. The world point
X gets projected onto the image plane point x. Unless
otherwise stated, the points on the image plane are used after
undistortion.

S.II. EVENT FRAME E

A traditional grayscale (global-shutter) camera records
frames at a fixed frame rate by integrating the number of
photons for the chosen shutter time. This is done for all pixels
synchronously. In contrast, an event camera only records the
polarity of logarithmic brightness changes asynchronously at
each pixel. If the brightness at time t of a pixel at location
x is given by It,x, an event is triggered when:

‖ log (It+1,x)− log (It,x) ‖1 ≥ τ
Here τ is a threshold which will determine if an event is
triggered or not. τ is set at the driver level as a combination
of multiple parameters. Each triggered event outputs the
following data:

e = {x, t, p}

Nitin J. Sanket and Chethan M. Parameshwara contributed equally to
this work. (Corresponding author: Nitin J. Sanket.)

1Perception and Robotics Group, University of Maryland Institute for
Advanced Computer Studies, University of Maryland, College Park.
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where p = ±1 denotes the sign of the brightness change.
The event data unlike an image can vary in data rate and are
generally output as a vector of four numbers per triggered
event. The data rate is small when the amount of motion
and/or scene contrast are small and large when either the
motion or the scene contrast is large. This can be beneficial
for asynchronous operation, however on a low power digital
processor like the one on-board a micro-quadrotor, this can
be appalling. To maintain a near constant computational
bottle-neck for event processing, we create event frames
denoted as E . An event frame is essentially a collection
events triggered in a spatio-temporal window starting at t0
and a temporal depth of δt. The event frame E is formed as
follows.

E (x, δt)+ =

t0+δt∑

t=t0

1 (x, t, p = +1)

E (x, δt)− =

t0+δt∑

t=t0

1 (x, t, p = −1)

E (x, δt)τ =

(
t0+δt∑

t=t0

1 (x, t, p = ±1)

)−1
E (t− t0)

Here 1 is an indicator function which has a value of 1 for an
event triggered with polarity of p. For E+ the value of p is
+1. Here E is the expectation/averaging operator. Finally E+,
E− and Eτ are normalized such that minimum and maximum
values are scaled between [0, 1]. Essentially E+/E− captures
the per-pixel average number of positive/negative event
triggers in the spatio-temportal window spanned between
t0 and t0 + δt. Eτ captures the average trigger time per
pixel. This event frame representation is inspired by previous
works [1] [2]. The event frame E is composed by depthwise
stacking E+, E− and Eτ , i.e., E = {E+,E−,Eτ}. Using
event frames has some pragmatic advantages as compared
to processing event by event on the raw event stream.

• The control command can be produced within a constant
time bound as event frames are produced at a near
constant rate.

• The spatial relationships between event triggers are
preserved along with polarity and timing information
which is exploited by convolutional neural networks
employed in this paper.

• Event frames can be produced in linear time in the
number of event triggers.
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S.III. EVHOMOGRAPHYNET

A simple and computationally inexpensive way to obtain
odometry on a quadrotor is to use a downfacing camera
looking at a planar surface. This approximation coupled
with data from an IMU and a distance sensor enables
high speed “cheap” odometry for navigation. Recently, deep
learning approaches have shown more robust homography
estimation in traditional images [3], [4]. Inspired by this,
we propose the first deep learning based solution to the
problem of homography estimation using event cameras
which can be run on an embedded computer at reasonably
high speeds and good accuracy. Also, the added benefit of
using a deep network for homography is that the tradeoff
between speed and accuracy could be altered easily (by
changing number of parameters). Let us mathematically
formulate our problem statement. Let Et and Et+1 be the
event frames captured at times t and t + 1, respectively,
and δt � ∆t where ∆t is the time difference between
the start times of event frame accumulation. In the scenario
presented before, the transformation between the two events
frames is a homography. This can be written as xt+1 =
Ht+1
t xt, where xt+1,xt represent the homogeneous point

correspondences in the two event frames and Ht+1
t is the

resulting non-singular 3×3 homography matrix between the
two frames. We adapt the previous works on deep learning
based homography estimation [3] [4] for both supervised
and unsupervised flavors of deep learning based homography
estimation. For the supervised flavor of the algorithm, we
generate synthetic homography warped event frames and
train them using the following loss function.

argmin
H̃4Pt

E
(
‖H̃4Pt − Ĥ4Pt‖2

)
(S1)

Here, H̃4Pt and Ĥ4Pt are the predicted and ground truth
4-point homographies. We refer the readers to [3] for more
details.

For the unsupervised version, we adapt the mathematical
formulation [4] for TensorDLT and the Spatial Transformer
Network (STN) using bilinear interpolation. The final loss
function is given as:

argmin
H̃4Pt

E
(
D
(
W
(

Et, H̃4Pt

)
,Et+1

))
(S2)

where W is a generic differentiable warp function and
can take on different mathematical formulations based on
it’s second argument (model parameters). In this case, W
contains both the TensorDLT and the STN. As before, D
represents a distance measuring image similarity between
two event frames (Refer to the Sec. S.IV for the mathematical
formulations of D).

S.IV. LOSS FUNCTIONS

In this Section, we present the mathematical formulations
for variants of the loss functions used in this work.

The two flavors of the heuristic Contrast function C used
in Section II-A of the main paper is inspired by [5] are given

below (denoted by C1 and C2).

C1 (E) = E (‖Var (∇E) ‖1)

Var (E) = E
(
(E (x)− E (E)) 2

)

C2 (E) = E (‖∇E‖1)

where ∇ =
[
∇x ∇y

]T
is the 2D gradient operator (sobel

in our case), Var is the variance operator and x denotes the
pixel location. The key difference from [5] is that we use the
variance operator on the gradients instead on raw values as
empirically this gave us better results and was more stable
during training.

Mathematical formulations of the different variants of the
distance function D used in Sections II-A, II-B of the main
paper and S.III which measures the similarity between two
event frames are given below (denoted as D1, D2 and D3).

D1 (E1,E2) = E (‖E1 − E2‖1)

D2 (E1,E2|α, ε) = E
((

(E1 − E2)
2

+ ε2
)α)

D3 (E1,E2|α, ε, c) = E


 b

d



(

( (E1 − E2)/c)
2

b
+ 1

)d/2

− 1






b = ‖2− α̂‖1 + ε; d =

{
α̂+ ε if α̂ ≥ 0

α̂− ε if α̂ < 0

α̂i = (2− 2εα)
eαi

eαi + 1
∀i

Here, D1 is the generic l1 photometric loss [6] commonly
used for traditional images, D2 is the Chabonnier loss [7]
commonly used for optical flow estimation for traditional
images and D3 is the robust loss function presented in [8].
In D3, the value of α is output from the network (Refer to
S.V for architecture details).

S.V. NETWORK DETAILS

In this Section, we will present the information on network
architecture and training details.

The network architecture is shown in Fig. S2. Notice the
simplicity in our network owing our performance to the
approach of stacking multiple shallow networks to obtain
good performance. It must be noted that using advanced
architectures might lead to better performance. We leave this
as an avenue for future work.

EVDeblurNet was trained for 200 epochs with a learning
rate of 10−3 for 200 epochs with a batch size of 256 for
losses using D1 and D2 and with a batch size of 32 for losses
using D3. Also, the loss part associated with the contrast is
scaled by a factor of 2.0 and the loss part associated with
the distance is scaled by a factor of 1.0. This is equivalent
to setting λ = 0.33.

EVSegNet, EVFlowNet, and EVSegFlowNet were trained
for 50 epochs with a learning rate of 10−4 and a batch size
of 256. EVHomographyNet was trained for 200 epochs with
learning rate 10−4 and a batch size of 256.

For all the networks, the event frames E were normalized
by dividing each pixel value by 255 and then subtracting by
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Figure S2. Network Architectures used in the proposed pipeline. Left:
EVDeblurNet, Middle: EVHomographyNet and Right: EVSegFlowNet.
Green blocks show the convolutional layer with batch normalization and
ReLU activation, cyan blocks show deconvolutional layer with batch
normalization and ReLU activation and orange blocks show dropout layers.
The numbers inside convolutional and deconvolutional layers show kernel
size, number of filters and stride factor. The number inside dropout layer
shows the dropout fraction.N is 3 and 6 respectively for EVDeblurNet when
using losses D1/D2 and D3. N is 2 and 5 respectively for EVSegFlowNet
when using losses D1/D2 and D3.

0.5 and finally scaling by 2.0 to bound all values between
[−1, 1].

For networks using D3 loss, the values of α are output
by the networks last n channels. Here n denotes the number
of input channels per image (3 in our case of event frame).
N = 2n when using D3 loss.

S.VI. COMPRESSION ACHIEVED BY USING
EVSEGFLOWNET

Now, let’s analyze the complexity of EVSegFlowNet
as compared to a combination of separate segmentation

and flow networks we call EVSegNet and EVFlowNet
respectively. Let O denote the complexity measure as
the minimum number of neurons to obtain a satisfactory
generalization performance on a specific task. We also
assume that for smaller and shallow networks complexity
scales with number of neurons almost linearly. The
complexity for a combination of EVSegNet and EVFlowNet
is given byO(S)+O(F ). Let the complexity of segmentation
and flow obtained by EVSegFlowNet be O(S̃), O(F̃ )
respectively. A compression/speedup is achieved when
O(S̃) +O(F̃ )

O(S) +O(F )
< 1. Now, because we are only estimating

flow for foreground pixels in EVSegFlowNet we have
O(F̃ )

O(F )
≈ F

B
. Also, as we mentioned before we

get segmentation for free from EVSegFlowNet hence
O(S̃) ≈ 0 � O(S). This also implies that we
achieved good compression/speedup by our formulation as
O(S̃) +O(F̃ )

O(S) +O(F )
� 1.

S.VII. MOVING OBJECT DATASET (MOD)

Extensive and growing research on visual (inertial)
odometry or SLAM have lead to the development of a
large number of datasets. Recent adaption of deep learning
to solve these aforementioned problems have fostered the
development of large scale datasets (large amount of
data). However, most of these datasets are built with the
fundamental assumption of static scenes in mind and as a
manifestation of which moving or dynamic objects are often
not included in these datasets [9]–[11].

To this end, we propose to use synthetic scenes for
generating “unlimited” amount of training data with one or
more moving objects in the scene. We accomplish this by
adapting and proliferating the simulator presented in [10].
To incubate generalization to novel scenes and to utilize the
algorithm trained on simulation directly in the real world, we
create synthetic moving objects which vary significantly in
their texture, shape and trajectory. We also choose random
textures for the walls of the 3D room in which objects will
move about.

To generate data, we randomize wall textures, objects
and object/camera trajectories to obtain seven unique
configurations out of which one is exclusively used for
test of generalization on more complex structures. Each
configuration has a room with three objects moving as shown
in Fig. S3. Images are rendered at 1000 frames per second
at a resolution of 346 × 260 and a field of view of 90◦ for
each configuration. Using these images, events are generated
following the approach described in [10]. Later event frames
E are generated with three different integration times δt of
{1, 5, 10} ms. Details about the room, lighting and objects
are given next.

A. 3D room and moving objects

Each room is of size 10×10×5 m and has random textures
on all the walls. These random textures consist of different
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Figure S3. Various Scene setups used for generating data. Red box indicates the scene used for generating out of dataset testing data to evaluate
generalization to novel scenes.

Figure S4. Moving objects used in our simulation environment. Left to right: ball, cereal box, tower, cone, car, drone, kunai, wine bottle and airplane.
Notice the variation in texture, color and shape. Note that the objects are not presented to scale for visual clarity.

Figure S5. Random textures used in our simulation environment

patterns, colors and shapes. These textures mimic those
which occur in real-world indoor and outdoor environments
such as skyscrapers, flowers, landscape, bricks, wood, stone
and carpet. Each room contains seven light sources inside it
for uniform illumination.

The camera is moved inside the 3D room on trajectories
such that almost all possible combinations of rotation and
translation are obtained. This is aimed at replicating the
movement which could be encountered on a real quadrotor.

We have three Independently Moving Objects (IMOs) in
each room. Each object is unique in color, shape, texture and
size. The objects are chosen to range from simple shapes and
textures to complex ones. The objects chosen are ball, cereal
box, tower, cone, car, drone, kunai, wine bottle and airplane.
The trajectories of the objects are chosen such that many
different combinations of relative pose between the camera
and the objects are encountered. Also, the objects are moving
ten times faster than the camera simulating objects being
thrown at a hovering or a slow moving (drifting) quadrotor.
The wall textures and moving objects are shown in Figs. S4
and S5 respectively.

B. Dataset for EVDeblurNet

To learn a simple deblur function, we obtaian data from
a down facing camera looking at a planar texture and such
that no moving objects appear in the frame. The textures

for the floor are chosen to replicate the common floor
patterns such as wooden flooring, stone, kid’s play carpet,
and tiles. A total of 15K event frames corresponding to five
different textures and integration times δt of {1, 5, 10} ms
are obtained. Random crops of 128 × 128 are used to train
the network.

C. Dataset for EVSegNet, EVFlowNet and EVSegFlowNet

In this dataset, the camera follows the same trajectory
given in Section S.VII.B to capture the moving objects in
the 3D environment. The camera is moving approximately
at 0.005 m per frame and moving objects are ranging from
0.05 to 0.06 m per frame. There are some instances where
moving objects collide with the camera. We specifically
included these scenarios in the dataset so that the learning
approaches could learn utilizing both small and large changes
in object appearances between consecutive event frames.
Average of two objects per frame is captured from the camera
(minimum of 0 objects to maximum of 3 objects). Using
the six scenarios, 70K event frames are obtained (including
data from integration times of {1, 5, 10} ms). Event frames
from two random integration times per scenario are chosen
for training. We obtain 60K images for training and 10K
images for testing (we only use 1 ms data not used for
training for testing due to mask alignment errors at higher
integration times). During training, we use frame skips of
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Table SI
QUANTITATIVE EVALUATION OF DIFFERENT METHODS FOR HOMOGRAPHY ESTIMATION.

Method (Loss)
RMSEi in px. RMSEo in px.

γ = ±[0, 5] γ = ±[6, 10] γ = ±[11, 15] γ = ±[16, 20] γ = ±[21, 25] γ = ±[0, 5] γ = ±[6, 10] γ = ±[11, 15] γ = ±[16, 20] γ = ±[21, 25]

Identity 3.92 ± 0.83 11.40 ± 0.70 18.43 ± 0.70 25.50 ± 0.70 32.55 ± 0.71 3.92 ± 0.84 11.40 ± 0.70 18.44 ± 0.71 25.49 ± 0.70 32.55 ± 0.71
S 3.23 ± 1.13 3.90 ± 1.34 5.31 ± 2.05 9.63 ± 4.57 17.65 ± 7.00 4.15 ± 1.78 5.05 ± 2.19 6.99 ± 3.11 11.21 ± 4.84 18.37 ± 6.61
US∗ (D1) 2.97 ± 1.22 3.84 ± 1.61 5.99 ± 2.78 11.64 ± 5.69 20.36 ± 7.68 3.92 ± 1.53 5.31 ± 2.43 8.14 ± 3.86 13.63 ± 5.87 21.22 ± 7.35
US∗ (D2) 2.48 ± 0.93 3.53 ± 1.43 5.89 ± 2.70 11.74 ± 5.69 20.51 ± 0.70 3.19 ± 1.26 4.86 ± 2.31 7.92 ± 3.73 13.47 ± 5.71 21.22 ± 7.08
DB + S 2.73 ± 1.01 3.16 ± 1.23 4.00 ± 1.79 6.50 ± 3.54 12.22 ± 6.58 3.69 ± 1.51 4.49 ± 2.10 5.91 ± 3.16 9.04 ± 4.90 14.60 ± 6.95
DB + US (D1) 2.19 ± 0.88 3.04 ± 1.57 4.99 ± 2.75 10.16 ± 5.54 18.62 ± 7.85 3.08 ± 1.37 4.63 ± 2.68 7.57 ± 4.30 13.16 ± 6.25 21.08 ± 7.49
DB + US (D2) 2.41 ± 1.06 3.30 ± 1.77 5.36 ± 3.02 10.39 ± 5.78 18.77 ± 8.07 3.35 ± 1.76 5.05 ± 3.03 8.11 ± 4.65 13.46 ± 6.48 21.08 ± 7.81
SI 1.67 ± 0.69 2.16 ± 0.92 2.92 ± 1.29 5.13 ± 2.83 11.45 ± 6.08 3.02 ± 1.61 4.42 ± 2.15 6.34 ± 2.84 9.38 ± 3.86 14.70 ± 5.17
USI (D1) 1.50 ± 0.59 2.16 ± 0.98 3.31 ± 1.66 6.57 ± 3.85 13.45 ± 6.93 2.11 ± 0.90 3.26 ± 1.46 5.34 ± 2.22 9.20 ± 3.67 15.05 ± 5.27
USI (D2) 1.49 ± 0.68 2.14 ± 1.03 3.40 ± 1.69 6.91 ± 3.97 14.19 ± 6.96 2.03 ± 0.92 3.31 ± 1.53 3.44 ± 2.34 9.32 ± 3.60 15.53 ± 5.34

∗ Trained for 100 epochs on supervised and then fine-tuned on unsupervised for 100 more epochs. γ denotes the perturbation range in px. for evaluation.

Figure S6. Different textured carpets laid on the ground during real
experiments to aid robust homography estimation from EVHomographyNet.

Table SII
COMPARSION OF HOMOGRAPHY NETWORK PERFORMANCE FOR EVENT

AND RGB FRAMES.

Input Run Time FLOPs Num. Params
in ms in M in M

Event Frame E 2.5 250 1.3
RGB Frame I 3.7 582 9.7

Figure S7. Network Architectures used in Table SII. Left: Homography
network used on event frames, Right: Homography network used on image
frames. Green blocks show the convolutional layer with batch normalization
and ReLU activation, cyan blocks show deconvolutional layer with batch
normalization and ReLU activation and orange blocks show dropout layers.
The numbers inside convolutional and deconvolutional layers show kernel
size, number of filters and stride factor. Notice the similarity in architectures
but difference in number of parameters.

one to four to faciliate variable baseline learning of flow
and segmentation. We call this test set as “in dataset” testing
because the test set though differs significantly in appearance
due to integration times still contains the same objects and
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Figure S8. Objects used in experiments. Left to right: Airplane, car,
spherical ball and Bebop 2.

Figure S9. Vicon estimates for the trajectories of the objects and quadrotor.
(a) Perspective and top view for single unknown object case, (b) perspective
and top view for multiple object case. Object and quadrotor silhouettes are
shown to scale. Time progression is shown from red to yellow for objects
and blue to green for the quadrotor.

textures as the training set.
For measuring the amount of generalization of our

approach, we created a more complex and completely
different scenario for testing. This scenario contains
immovable 3D objects such as table, chair and a box to 3D
room with different textures (different per wall and different
from training set textures). The textures on the wall are more
realistic depicting a real indoor environment (Refer to the
scenario in the red box in Fig. S3). We particularly designed
such a scene to highlight that our network is mostly learning
from contours and motion information of the objects which is
agnostic to scene appearance. Here, we use integration times
δt of {1, 2} ms. We obtain 6K frames for “out of dataset”
testing.

D. Dataset for EVHomographyNet

To train EVHomographyNet, we use the same training set
from EVSegFlowNet with the major difference being that
here only one frame is used at a time. A random patch of

size 128× 128 is obtained from the 346× 260 frame. Then
a random perturbation between ±γ is applied to each of the
corners. This is used to obtain the homography warped event
frame. This approach is exactly the same as given in [3], [4].
For testing “in dataset” the center crops of all the images used
for training are chosen and random perturbations of different
±γ are applied. (Refer to Table SI).

For “out of dataset” testing a similar treatment is given to
the out of dataset used for evaluating EVSegFlowNet.

S.VIII. UNKNOWN SHAPED OBJECTS WITH BOUND ON
SIZE

Now, consider the case of evading an IMO of an arbitrary
shape S. As the projection of S on the image plane can be
either convex or non-convex, we first obtain the convex hull
of S denoted by H. Clearly, an evasive maneuver performed
usingH guarantees evasion from the object when the rotation
of the IMO with respect to the camera is small.

Next, we find the principal axes of the projection of H on
the image plane. Because we have a bound on size, i.e., we
have a bound on the length of the maximum principle axis
in 3D, we can evade this object assuming it to be a sphere
of this diameter. Note that this method is more conservative
than the previous approach constraining the sensing range
and latency based on how close the bound is to actual object
size.

S.IX. PURSUIT: A REVERSAL OF EVASION?

The generality of our perception stack for navigation is
demonstrated by showing that pursuit can be accomplished
using a simple reversal of the control policy for the cases
presented in Sec. III.A. and III.B. of the main paper.

Additionally, for an IMO which is self-propelled like a
quadrotor, one can perform both pursuit and evade tasks by
assuming a linear motion model. Note that here no concept
of the agent’s intent is used but it can be introduced with an
additional neural network for predicting the motion model
of the agent (intent) [12]. We leave this for future work.

S.X. EXPERIMENTAL SETUP

The experiments were conducted in the Autonomy
Robotics and Cognition (ARC) lab’s indoor flying space at
the University of Maryland, College Park. The total flying
volume is about 6× 5.5× 3.5 m3. A Vicon motion capture
system with 8 vantage V8 cameras are used to obtain ground
truth at 100 Hz. The objects were either thrown or flown
(in-case of the bebop experiment) at the quadrotor during
hover or slow flight (simulating slow drift) at speeds ranging
from 4.4 ms−1 to 6.8 ms−1 from a distance ranging from
3.6 m to 5.2 m. To enable robust homography estimation,
we laid down carpets of different textures on the ground to
obtain strong contours in event frames (Refer to Fig. S6).

We used four different objects in our experiments, (a) a
spherical ball of diameter 140 mm, (b) a car of size 185 ×
95×45 mm (here a bound of 240 mm is used), (c) an airplane
of size 270 × 250 × 160 mm (size information not used in
experiments), (d) a Bebop 2 of size 330 × 380 × 200 mm.
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Also, we used an integration time δt of 30 ms for all our
experiments.

The proposed framework was tested on a modified Intel®

Aero Ready to Fly Drone. The Aero platform was selected
for its rugged carbon fiber chassis and integrated flight
controller running the PX4 flight stack.

For our experiments, we mounted a front facing DAVIS
240C event camera mated to a 3.3 - 10.5 mm f /1.4 lens set
at 3.3 mm giving us a diagonal Field Of View (FOV) of
84.5◦, a downfacing DAVIS 240B event camera mated to a
4.5 mm f /1.4 lens giving us a diagonal FOV of 67.4◦ and
a down facing PX4Flow sensor for altitude measurements.
Additionally, we obtain inertial measurments from the IMU
on the flight controller. We also mounted an NVIDIA Jetson
TX2 GPU to run all the perception and control algorithms
on-board (Fig. S1). All the communications happen over
serial port or USB. The takeoff weight of the flight setup
including the battery is 1400 g with dimensions being
330 × 290 × 230 mm. This gives us a maximum thrust to
weight ratio of 1.35.

All the neural networks were prototyped on a PC running
Ubuntu 16.04 with and Intel® Core i7 6850K 3.6GHz CPU,
an NVIDIA Titan-Xp GPU and 64GB of RAM in Python
2.7 using TensorFlow 1.12. The final code runs on-board the
NVIDIA Jetson TX2 running Linux for Tegra® (L4T) 28.1.
All the drivers for creating event frames and sensor fusion
are written in C++ for efficiency and all the neural network
codes run on the TX2’s GPU in Python 2.7. We obtain a
flight time of about 3 mins.

To enable robust homography estimation, we laid down
carpets of different textures on the ground to obtain strong
contours in event frames (Refer to Fig. S6).

S.XI. COMPARISON OF HOMOGRAPHY ESTIMATION
USING EVENT AND RGB FRAMES

With 1.3 Million parameters, homography estimation
using classical RGB images would not train due to the
dearth of number of parameters. The minimum number
of parameters required to get reasonable results was 9.7
Million for RGB images and the results are given in Tables
SI and SII. These networks were trained on RGB images
corresponding to that used for event frame homography
networks.

Table SI represents the error comparison of different
methods for homography estimation. The last three rows with
superscript I (which were omitted from the original draft due
to lack of space) have been included here and they represent
the methods trained on RGB images (eighth row denoted by
SI) of same resolution as the event frames (fifth row denoted
by DB+S). Note that the architecture for the network is the
same but the number of parameters is higher (more details
about this are given in Table SII and architecture comparisons
are shown in Fig. S7). The homography network with the
same number of parameters as that used for event frames
does not train on RGB frames due to dearth of parameters.
Notice that the preformance of best networks for both RGB
images and event frames are almost similar despite the dearth

in number of parameters in event frame based homography
networks, this is because the contour information is more
important for homography estimation when the motion is
large (large γ). However, for small perturbations (low γ),
the RGB frame based homography estimation works better
due to the dense nature of RGB data which is required for
fine alignment. Also, note that the images used for training
and testing did not have any motion blur, we expect that in
real-world motion blur would degrade the performance of
the networks trained on RGB images unless a network to
debur RGB frames is used.
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