
Supplementary Material for
EVDodge: Embodied AI For High-Speed Dodging On A Quadrotor Using Event Cameras

Nitin J. Sanket1, Chethan M. Parameshwara1, Chahat Deep Singh1, Ashwin V. Kuruttukulam1,
Cornelia Fermüller1, Davide Scaramuzza2, Yiannis Aloimonos1

S.I. EVENT FRAME E

A traditional grayscale (global-shutter) camera records
frames at a fixed frame rate by integrating the number of
photons for the chosen shutter time. This is done for all pixels
synchronously. In contrast, an event camera only records the
polarity of logarithmic brightness changes asynchronously at
each pixel. If the brightness at time t of a pixel at location
x is given by It,x, an event is triggered when:

‖ log (It+1,x)− log (It,x) ‖1 ≥ τ

Here τ is a threshold which will determine if an event is
triggered or not. τ is set at the driver level as a combination
of multiple parameters. Each triggered event outputs the
following data:

e = {x, t, p}

where p = ±1 denotes the sign of the brightness change.
The event data unlike an image can vary in data rate and are
generally output as a vector of four numbers per triggered
event. The data rate is small when the amount of motion
and/or scene contrast are small and large when either the
motion or the scene contrast is large. This can be beneficial
for asynchronous operation, however on a low power digital
processor like the one on-board a micro-quadrotor, this can
be appalling. To maintain a near constant computational
bottle-neck for event processing, we create event frames
denoted as E . An event frame is essentially a collection
events triggered in a spatio-temporal window starting at t0
and a temporal depth of δt. The event frame E is formed as
follows.

E (x, δt)+ =

t0+δt∑
t=t0

1 (x, t, p = +1)

E (x, δt)− =

t0+δt∑
t=t0

1 (x, t, p = −1)

E (x, δt)τ =

(
t0+δt∑
t=t0

1 (x, t, p = ±1)

)−1

E (t− t0)

Here 1 is an indicator function which has a value of 1 for an
event triggered with polarity of p. For E+ the value of p is

Nitin J. Sanket and Chethan M. Parameshwara contributed equally to
this work. (Corresponding author: Nitin J. Sanket.)

1Perception and Robotics Group, University of Maryland Institute for
Advanced Computer Studies, University of Maryland, College Park.

2Robotics and Perception Group, Dep. of Informatics, University of
Zurich, and Dep. of Neuroinformatics, University of Zurich and ETH Zurich.

+1. Here E is the expectation/averaging operator. Finally E+,
E− and Eτ are normalized such that minimum and maximum
values are scaled between [0, 1]. Essentially E+/E− captures
the per-pixel average number of positive/negative event
triggers in the spatio-temportal window spanned between
t0 and t0 + δt. Eτ captures the average trigger time per
pixel. This event frame representation is inspired by previous
works [1] [2]. The event frame E is composed by depthwise
stacking E+, E− and Eτ , i.e., E = {E+,E−,Eτ}. Using
event frames has some pragmatic advantages as compared
to processing event by event on the raw event stream.

• The control command can be produced within a constant
time bound as event frames are produced at a near
constant rate.

• The spatial relationships between event triggers are
preserved along with polarity and timing information
which is exploited by convolutional neural networks
employed in this paper.

• Event frames can be produced in linear time in the
number of event triggers.

S.II. LOSS FUNCTIONS

In this Section, we present the mathematical formulations
for variants of the loss functions used in this work.

The two flavors of the heuristic Contrast function C used
in Section II-A of the main paper is inspired by [3] are given
below (denoted by C1 and C2).

C1 (E) = E (‖Var (∇E) ‖1)
Var (E) = E (E (x)− E (E))

C2 (E) = E (‖∇E‖1)

where ∇ =
[
∇x ∇y

]T
is the 2D gradient operator (sobel

in our case), Var is the variance operator and x denotes the
pixel location. The key difference from [3] is that we use the
variance operator on the gradients instead on raw values as
empirically this gave us better results and was more stable
during training.

Mathematical formulations of the different variants of the
distance function D used in Sections II-A, II-B and II-C of
the main paper which measures the similarity between two

1

event frames are given below (denoted as D1, D2 and D3).

D1 (E1,E2) = E (‖E1 − E2‖1)

D2 (E1,E2|α, ε) = E
((

(E1 − E2)
2
+ ε2

)α)
D3 (E1,E2|α, ε, c) =

b

d

(((E1 − E2)/c)
2

b
+ 1

)d/2

− 1


b = ‖2− α̂‖1 + ε; d =

{
α̂+ ε if α̂ ≥ 0

α̂− ε if α̂ < 0

α̂i = (2− 2εα)
eαi

eαi + 1
∀i

Here, D1 is the generic l1 photometric loss [4] commonly
used for traditional images, D2 is the Chabonnier loss [5]
commonly used for optical flow estimation for traditional
images and D3 is the robust loss function presented in [6].
In D3, the value of α is output from the network (Refer to
S.III for architecture details).

S.III. NETWORK DETAILS

In this Section, we will present the information on network
architecture and training details.

The network architecture is shown in Fig. S1. Notice the
simplicity in our network owing our performance to the
approach of stacking multiple shallow networks to obtain
good performance. It must be noted that using advanced
architectures might lead to better performance. We leave this
as an avenue for future work.

EVDeblurNet was trained for 200 epochs with a learning
rate of 10−3 for 200 epochs with a batch size of 256 for
losses using D1 and D2 and with a batch size of 32 for losses
using D3. Also, the loss part associated with the contrast is
scaled by a factor of 2.0 and the loss part associated with
the distance is scaled by a factor of 1.0. This is equivalent
to setting λ = 0.33.

EVSegNet, EVFlowNet, and EVSegFlowNet were trained
for 50 epochs with a learning rate of 10−4 and a batch size
of 256. EVHomographyNet was trained for 200 epochs with
learning rate 10−4 and a batch size of 256.

For all the networks, the event frames E were normalized
by dividing each pixel value by 255 and then subtracting by
0.5 and finally scaling by 2.0 to bound all values between
[−1, 1].

For networks using D3 loss, the values of α are output
by the networks last n channels. Here n denotes the number
of input channels per image (3 in our case of event frame).
N = 2n when using D3 loss.

S.IV. MULTI MOVING OBJECT EVENT DATASET

Extensive and growing research on visual (inertial)
odometry or SLAM have lead to the development of a
large number of datasets. Recent adaption of deep learning
to solve these aforementioned problems have fostered the
development of large scale datasets (large amount of
data). However, most of these datasets are built with the
fundamental assumption of static scenes in mind and as a

Figure S1. Network Architectures used in the proposed pipeline. Left:
EVDeblurNet, Middle: EVHomographyNet and Right: EVSegFlowNet.
Green blocks show the convolutional layer with batch normalization and
ReLU activation, cyan blocks show deconvolutional layer with batch
normalization and ReLU activation and orange blocks show dropout layers.
The numbers inside convolutional and deconvolutional layers show kernel
size, number of filters and stride factor. The number inside dropout layer
shows the dropout fraction. N is 3 and 6 respectively for EVDeblurNet when
using losses D1/D2 and D3. N is 2 and 5 respectively for EVSegFlowNet
when using losses D1/D2 and D3.

manifestation of which moving or dynamic objects are often
not included in these datasets [7]–[9].

To this end, we propose to use synthetic scenes for
generating “unlimited” amount of training data with one or
more moving objects in the scene. We accomplish this by
adapting and proliferating the simulator presented in [8]. To
incubate generalization to novel scenes and to utilize the
algorithm trained on simulation directly in the real world,
we create synthetic moving objects which vary significantly
in their texture, shape and trajectory. We also choose random
textures for the walls of the 3D room in which objects will

2

Figure S2. Various Scene setups used for generating data. Red box indicates the scene used for generating out of dataset testing data to evaluate
generalization to novel scenes.

Figure S3. Moving objects used in our simulation environment. Left to right: ball, cereal box, tower, cone, car, drone, kunai, wine bottle and airplane.
Notice the variation in texture, color and shape. Note that the objects are not presented to scale for visual clarity.

Figure S4. Random textures used in our simulation environment

Figure S5. Representation of coordinate frames on the hardware platform
used. (1) Front facing DAVIS 240C, (2) down facing sonar on PX4Flow, (3)
down facing DAVIS 240B, (4) NVIDIA TX2 CPU+GPU, (5) Intel® Aero
Compute board.

move about.
To generate data, we randomize wall textures, objects

and object/camera trajectories to obtain seven unique
configurations out of which one is exclusively used for
test of generalization on more complex structures. Each
configuration has a room with three objects moving as shown
in Fig. S2. Images are rendered at 1000 frames per second
at a resolution of 346 × 260 and a field of view of 90◦ for
each configuration. Using these images, events are generated
following the approach described in [8]. Later event frames
E are generated with three different integration times δt of
{1, 5, 10} ms. Details about the room, lighting and objects

are given next.

A. 3D room and moving objects

Each room is of size 10×10×5 m and has random textures
on all the walls. These random textures consist of different
patterns, colors and shapes. These textures mimic those
which occur in real-world indoor and outdoor environments
such as skyscrapers, flowers, landscape, bricks, wood, stone
and carpet. Each room contains seven light sources inside it
for uniform illumination.

The camera is moved inside the 3D room on trajectories
such that almost all possible combinations of rotation and
translation are obtained. This is aimed at replicating the
movement which could be encountered on a real quadrotor.

We have three Independently Moving Objects (IMOs) in
each room. Each object is unique in color, shape, texture and
size. The objects are chosen to range from simple shapes and
textures to complex ones. The objects chosen are ball, cereal
box, tower, cone, car, drone, kunai, wine bottle and airplane.
The trajectories of the objects are chosen such that many
different combinations of relative pose between the camera
and the objects are encountered. Also, the objects are moving
ten times faster than the camera simulating objects being
thrown at a hovering or a slow moving (drifting) quadrotor.
The wall textures and moving objects are shown in Figs. S3
and S4 respectively.

3

Figure S6. Different textured carpets laid on the ground during real
experiments to aid robust homography estimation from EVHomographyNet.

B. Dataset for EVDeblurNet

To learn a simple deblur function, we obtaian data from
a down facing camera looking at a planar texture and such
that no moving objects appear in the frame. The textures
for the floor are chosen to replicate the common floor
patterns such as wooden flooring, stone, kid’s play carpet,
and tiles. A total of 15K event frames corresponding to five
different textures and integration times δt of {1, 5, 10} ms
are obtained. Random crops of 128 × 128 are used to train
the network.

C. Dataset for EVSegNet, EVFlowNet and EVSegFlowNet

In this dataset, the camera follows the same trajectory
given in Section S.IV.B to capture the moving objects in
the 3D environment. The camera is moving approximately
at 0.005 m per frame and moving objects are ranging from
0.05 to 0.06 m per frame. There are some instances where
moving objects collide with the camera. We specifically
included these scenarios in the dataset so that the learning
approaches could learn utilizing both small and large changes
in object appearances between consecutive event frames.
Average of two objects per frame is captured from the camera
(minimum of 0 objects to maximum of 3 objects). Using
the six scenarios, 70K event frames are obtained (including
data from integration times of {1, 5, 10} ms). Event frames
from two random integration times per scenario are chosen
for training. We obtain 60K images for training and 10K
images for testing (we only use 1 ms data not used for

training for testing due to mask alignment errors at higher
integration times). During training, we use frame skips of
one to four to faciliate variable baseline learning of flow
and segmentation. We call this test set as “in dataset” testing
because the test set though differs significantly in appearance
due to integration times still contains the same objects and
textures as the training set.

For measuring the amount of generalization of our
approach, we created a more complex and completely
different scenario for testing. This scenario contains
immovable 3D objects such as table, chair and a box to 3D
room with different textures (different per wall and different
from training set textures). The textures on the wall are more
realistic depicting a real indoor environment (Refer to the
scenario in the red box in Fig. 2). We particularly designed
such a scene to highlight that our network is mostly learning
from contours and motion information of the objects which is
agnostic to scene appearance. Here, we use integration times
δt of {1, 2} ms. We obtain 6K frames for “out of dataset”
testing.

D. Dataset for EVHomographyNet

To train EVHomographyNet, we use the same training set
from EVSegFlowNet with the major difference being that
here only one frame is used at a time. A random patch of
size 128× 128 is obtained from the 346× 260 frame. Then
a random perturbation between ±γ is applied to each of
the corners. This is used to obtain the homography warped
event frame. This approach is exactly the same as given in
[10], [11]. For testing “in dataset” the center crops of all the
images used for training are chosen and random perturbations
of different ±γ are applied. (Refer to Table I of the main
paper).

For “out of dataset” testing a similar treatment is given to
the out of dataset used for evaluating EVSegFlowNet.

S.V. EXPERIMENTAL SETUP

The proposed framework was tested on a modified Intel®

Aero Ready to Fly Drone. The Aero platform was selected
for its rugged carbon fiber chassis and integrated flight
controller running the PX4 flight stack.

For our experiments, we mounted a front facing DAVIS
240C event camera mated to a 3.3 - 10.5 mm f /1.4 lens set
at 3.3 mm giving us a diagonal Field Of View (FOV) of
84.5◦, a downfacing DAVIS 240B event camera mated to a
4.5 mm f /1.4 lens giving us a diagonal FOV of 67.4◦ and
a down facing PX4Flow sensor for altitude measurements.
Additionally, we obtain inertial measurments from the IMU
on the flight controller. We also mounted an NVIDIA Jetson
TX2 GPU to run all the perception and control algorithms
on-board (Fig. S5). All the communications happen over
serial port or USB. The takeoff weight of the flight setup
including the battery is 1400 g with dimensions being
330 × 290 × 230 mm. This gives us a maximum thrust to
weight ratio of 1.35.

All the neural networks were prototyped on a PC running
Ubuntu 16.04 with and Intel® Core i7 6850K 3.6GHz CPU,

4

an NVIDIA Titan-Xp GPU and 64GB of RAM in Python
2.7 using TensorFlow 1.12. The final code runs on-board the
NVIDIA Jetson TX2 running Linux for Tegra® (L4T) 28.1.
All the drivers for creating event frames and sensor fusion
are written in C++ for efficiency and all the neural network
codes run on the TX2’s GPU in Python 2.7. We obtain a
flight time of about 3 mins.

To enable robust homography estimation, we laid down
carpets of different textures on the ground to obtain strong
contours in event frames (Refer to Fig. S6).

S.VI. COMPRESSION ACHIEVED BY USING
EVSEGFLOWNET

Now, let’s analyze the complexity of EVSegFlowNet
as compared to a combination of separate segmentation
and flow networks we call EVSegNet and EVFlowNet
respectively. Let O denote the complexity measure as
the minimum number of neurons to obtain a satisfactory
generalization performance on a specific task. We also
assume that for smaller and shallow networks complexity
scales with number of neurons almost linearly. The
complexity for a combination of EVSegNet and EVFlowNet
is given byO(S)+O(F). Let the complexity of segmentation
and flow obtained by EVSegFlowNet be O(S̃), O(F̃)
respectively. A compression/speedup is achieved when
O(S̃) +O(F̃)
O(S) +O(F)

< 1. Now, because we are only estimating

flow for foreground pixels in EVSegFlowNet we have
O(F̃)
O(F)

≈ F
B

. Also, as we mentioned before we

get segmentation for free from EVSegFlowNet hence
O(S̃) ≈ 0 � O(S). This also implies that we
achieved good compression/speedup by our formulation as
O(S̃) +O(F̃)
O(S) +O(F)

� 1.

REFERENCES

[1] A. Mitrokhin, C. Fermüller, C. Parameshwara, and Y. Aloimonos.
Event-based moving object detection and tracking. In 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pages 1–9, Oct 2018.

[2] Ana I Maqueda, Antonio Loquercio, Guillermo Gallego, Narciso
Garcı́a, and Davide Scaramuzza. Event-based vision meets deep
learning on steering prediction for self-driving cars. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 5419–5427, 2018.

[3] Guillermo Gallego, Henri Rebecq, and Davide Scaramuzza. A unifying
contrast maximization framework for event cameras, with applications
to motion, depth, and optical flow estimation. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June 2018.

[4] Hang Zhao, Orazio Gallo, Iuri Frosio, and Jan Kautz. Loss functions
for image restoration with neural networks. IEEE Transactions on
computational imaging, 3(1):47–57, 2016.

[5] Deqing Sun, Stefan Roth, and Michael J Black. A quantitative analysis
of current practices in optical flow estimation and the principles behind
them. International Journal of Computer Vision, 106(2):115–137,
2014.

[6] Jonathan T. Barron. A general and adaptive robust loss function.
CVPR, 2019.

[7] Wenbin Li, Sajad Saeedi, John McCormac, Ronald Clark, Dimos
Tzoumanikas, Qing Ye, Yuzhong Huang, Rui Tang, and Stefan
Leutenegger. Interiornet: Mega-scale multi-sensor photo-realistic
indoor scenes dataset. In British Machine Vision Conference (BMVC),
2018.

[8] Henri Rebecq, Daniel Gehrig, and Davide Scaramuzza. ESIM: an open
event camera simulator. Conf. on Robotics Learning (CoRL), October
2018.

[9] A. Z. Zhu, D. Thakur, T. Özaslan, B. Pfrommer, V. Kumar, and
K. Daniilidis. The multivehicle stereo event camera dataset: An event
camera dataset for 3d perception. IEEE Robotics and Automation
Letters, 3(3):2032–2039, July 2018.

[10] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. Deep
image homography estimation. arXiv preprint arXiv:1606.03798,
2016.

[11] Ty Nguyen, Steven W Chen, Shreyas S Shivakumar, Camillo Jose
Taylor, and Vijay Kumar. Unsupervised deep homography: A fast and
robust homography estimation model. IEEE Robotics and Automation
Letters, 3(3):2346–2353, 2018.

5

	Event Frame E
	Loss Functions
	Network Details
	Multi Moving Object Event Dataset
	3D room and moving objects
	Dataset for EVDeblurNet
	Dataset for EVSegNet, EVFlowNet and EVSegFlowNet
	Dataset for EVHomographyNet

	Experimental Setup
	Compression Achieved by using EVSegFlowNet
	References

