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Fig. 1: We present FeelAnyForce, a method for estimating contact forces with sensor generalization capabilities on vision-
based tactile sensors. (a) We collect a dataset of tactile-depth-force data by using a robotic arm to press various indenters
onto a tactile sensor mounted on a force sensor. We then test its performance on a set of YCB and real world objects. (b) To
isolate the contact data Ti, we subtract the sensor specific background image. The network is trained to minimize the Force
regression error along with depth reconstruction loss. Note that the ground-truth depth Di is computed using photometric
stereo in Gelsight mini. (c) We showcase real-world experiments conducted with our force estimator.

Abstract— In this paper, we tackle the problem of esti-
mating 3D contact forces using vision-based tactile sensors.
In particular, our goal is to estimate contact forces over a
large range (up to 15 N) on any objects while generalizing
across different vision-based tactile sensors. Thus, we collected
a dataset of over 200K indentations using a robotic arm that
pressed various indenters onto a GelSight Mini sensor mounted
on a force sensor and then used the data to train a multi-
head transformer for force regression. Strong generalization
is achieved via accurate data collection and multi-objective
optimization that leverages depth contact images. Despite being
trained only on primitive shapes and textures, the regressor
achieves a mean absolute error of 4% on a dataset of un-
seen real-world objects. We further evaluate our approach’s
generalization capability to other GelSight mini and DIGIT
sensors, and propose a reproducible calibration procedure for
adapting the pre-trained model to other vision-based sensors.
Furthermore, the method was evaluated on real-world tasks,
including weighing objects and controlling the deformation
of delicate objects, which relies on accurate force feedback.
Supplementary material and extended discussions are available
at http://prg.cs.umd.edu/FeelAnyForce
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I. INTRODUCTION

Through the sense of touch, humans interact with precise
force to manipulate objects dexterously, adapting to object
features. Having accurate force control while interacting with
different objects is important during manipulation or when
dealing with fragile or deformable objects. Using their hands,
humans can simultaneously perceive other fine-grained quan-
tities of the external world, such as shapes, textures, and
hardness. No single robotics platform can replicate this
multi-modality perception [1], [2], but research in tactile
sensing is advancing. Various tactile sensor technologies
have been developed to mimic human perception, yet no
single technology stands out as superior, as each has its
limitations. Nowadays, vision-based tactile sensors [3], [4],
[5] have become the state-of-the-art in the field, reaching
high performance in tasks such as shape reconstruction [6],
[7], texture recognition [8] and local geometry estimation
[9], [10], [11], thanks to high-resolution output. However,
mapping such high-resolution output to a continuous value
of force, along with sensor specific non-linear mechanical
properties of the gel and non-uniform light distribution,
makes force estimation a non-trivial problem. While adding
markers can partially solve this problem, it leads to lower
performance when perceiving other object characteristics.

http://prg.cs.umd.edu/FeelAnyForce


Moreover, no prior work with tactile sensors demonstrates
sufficient precision and generalization across real-world ob-
jects of varying shapes, textures and over a wide range
of forces, while achieving consistent performance across
different types of sensors.
The goal of this paper is to build a 3D force estimator
for vision-based tactile sensors able to generalize to unseen
objects and to different vision-based tactile sensors with
high accuracy on a large range of forces (up to 15 N). To
solve this problem, we use the GelSight Mini sensor, which
outputs RGB tactile and depth images. In particular, we
collect a large dataset (over 200k indentations) of calibrated
real-world tuples of tactile images, depth images, and forces
on 10 3D-printed primitive shapes (indenters). The diversity
of indenters is chosen to help the network focus on the
meaningful features without overfitting on specific shapes.
The dataset was collected by varying the 6D relative pose be-
tween the sensor and the indenters with different indentation
levels, measured through careful design and calibration of an
automated data collection setup. We then use this dataset to
train a multi-head architecture consisting of a Vision Trans-
former [12] (ViT) backbone pre-trained on DINOv2 [13]
followed by a regressor head that estimates 3D forces and
a depth-reconstruction head. This approach, combined with
the robust features from pre-trained weights and the accu-
rate dataset, allows the ViT to focus on the force-related
characteristics of images, leading to better generalization on
unseen objects and sensors. We validate the robustness of
the architecture on a set of unseen everyday-life objects
and YCB model objects [14]. Furthermore, we propose a
fast fine-tuning calibration procedure through a 3D-printable
setup and a set of off-the-shelf weights to obtain better force
estimation performance on a specific combination of sensor
and gel. We also test the same procedure on the DIGIT sensor
obtaining promising results. To demonstrate the applications
of such an accurate tactile-force estimator, we validate the
performances on two downstream tasks: weighing objects by
pushing and controlled deformation of delicate objects, such
as plastic cups or fruits. We summarize our contributions as
follows:

• A depth-aware force estimation architecture capable of
adapting to unseen vision-based sensors in both static
and dynamic conditions.

• A large labeled dataset on 10 indenters including tactile
images, depth images, 3D forces vectors.

• A low-cost, user-friendly calibration procedure to ob-
tain comparable performances on different vision-based
tactile sensors.

II. RELATED WORKS

A. Tactile Force Estimation
Tactile Force estimation has attracted significant attention

in recent research among various types of sensors to ex-
tends the tactile sensors capabilities. Capacitive sensors were
employed in [15] where the force estimation performance
was only assessed on a single indenter and within limited
range of forces. In [16], a network was trained to predict 3D
forces using the BioTac sensor while performing grasp and
place tasks. However, the BioTac sensor’s limited force range

and frequent calibration requirements can hinder its practical
application. In [17], the authors used a FEM-based numerical
method to estimate force fields on a soft bubble sensor. How-
ever, this approach faces challenges in maintaining accuracy
under high deformation conditions. Recently, vision-based
tactile sensors have become more prominent [18], producing
high-resolution images by capturing gel deformations from
contact [19]. [20] achieved robust performance on marker-
based tactile sensors with FEM-based methods on a single
spherical indenter and limited forces. Likewise, the GelSlim
sensor [21] and the biomimetic sensor in [22] were tested on
limited ranges of forces and objects. On the other hand, [23]
validated with 10 indenters achieving comparable absolute
error to ours on a limited force range. Nevertheless , markers
can interfere with tasks like shape reconstruction, prompting
research into marker-free methods with better generaliza-
tion capabilities across different sensors. CNN-based meth-
ods were applied on GelSight [3], showing difficulties in
handling various indenters’ shapes not present in training.
[24] modifies the GelSight sensor design to make it more
suitable for force estimation. They tested their approach on
a significant range of forces, but the post-calibration force
error on different sensors of a kind remains noticeable. In
[25], the authors demonstrated their new sensor estimating
forces-torque on unseen 3D-printed objects. They validated
their approach on unseen objects but their model’s ability
to generalize across different sensors remains unexplored.
Our work estimates 3D force vectors from GelSight Mini,
training on diverse shapes and textures. We achieve state-
of-the-art force estimation accuracy on real-world and YCB
objects, demonstrating reliable performance across a wide
force range and various sensors.

B. Tactile Feedback in Control and Manipulation

Tactile force feedback implemented in a closed-loop ap-
proach is crucial for grasping and manipulation tasks, as
performance is limited without it [26], [27]. While force
sensors remain common in state-of-the-art methods [28],
vision-based tactile sensors have recently proven useful
for control and manipulation by inferring other valuable
information beyond force. Some works used vision-based
tactile feedback for control without directly relying on force.
For instance, [29] presented a learning-based tactile MPC
framework based on tactile images, while others used it
to build manipulation controllers [30], [31]. These sensors
were also applied to grasping tasks for evaluating success
[32], stability [33], or slip detection [34], [35]. In [36],
model-based tactile feature extraction methods were used
to develop grasping controllers. Our work aims to enhance
the multimodal capabilities of vision-based tactile sensors by
incorporating reliable force estimation into their skill set.

III. METHOD

In the following, we explain our dataset collection pro-
cedure (Sec. III-A, Fig. 1 a). Then, we present our model
for estimating 3D forces (Sec. III-B, Fig. 1 b). Finally,
we employ this regression model for two challenging real-
world tasks: weighing objects by pushing and interacting
with delicate objects (Sec. III-C, Fig 1 c).



A. Dataset Collection

We require our dataset to have ground-truth net force
vectors (∈ R3) for various indentations on tactile sensors. To
this end, we design a testbed (Fig. 1) to affix the tactile sensor
on a force sensor and use a robotic arm to drive the indenters
on the tactile sensor from different poses. To align the robot’s
end-effector pose (R) with the sensor’s coordinate system
(S), a set of key points is added to the testbed allowing
to find the transformation between them using a 3-point
registration algorithm [37]. To replicate indentations of real-
world objects, we use a set of primitive indenters inspired by
objects humans manipulate daily (Fig. 2). We want them to
be sufficiently descriptive of the world around us. The inden-
ters not only comprise different shapes and curvatures, but
also separate contact patches (triple cylinder), non-convex
contact (ring and cross), and flat surfaces (cube). To generate
indentation trajectories driven by the arm, we first move
the end-effector to the sensor’s coordinate system origin OS

using the transformation discussed earlier. Subsequently, we
define a sampling plane P where zS = 0 (see Fig. 1). Then
we sample a (x, y) pair from P , and we experimentally find
a range of safe orientations (θ, ζ, η) based on an indenter’s
shape to avoid breaking the sensor. Specifically, for every
indenter, we would have a set of indentation poses:

{(x, y, 0, α, β, γ)|x ∈ [−X,+X], y ∈ [−Y,+Y ],

α ∈ [−θ, θ], β ∈ [−ζ, ζ], γ ∈ [−η, η]}

After sampling the indentation poses (∈ SO3), we perform
indentations by gradually moving the indenter in small steps
along the z-axis of the end-effector’s coordinate system R
determined by sampled end-effector Euler angle rotations
(α, β, γ). By moving along the end-effector’s z-axis, we
achieve angled indentations that result in various force angles
in the dataset. To synchronize the tactile sensor and force
measurements and obtain the highest resolution from the
force sensor (0.04 N), it is necessary to allow the sensors
to stabilize after each indentation step. This is made pos-
sible using a robotic automated data collection approach.
It would not be feasible in manual data collection because
of the challenge of keeping the end-effector steady, which
would result in noisy force reading. We collecte over 200K
samples of tactile-depth-force vectors using 10 3D-printed
primitive indenters for training as demonstrated in Fig. 2
. For evaluation, we use a subset of YCB and some real
world objects (Fig. 1 a) to represent the error on real-world
unseen objects. Due to sensor characteristics,the dataset has a
bias toward higher F z (more than 15N) compared to F x, F y

(range of 4N) due to the sensor’s flat surface, which cannot
tolerate higher shear forces. After collecting data with all
the indenters, there would be a non-uniform distribution for
every force range. To eliminate this bias, we balance the
dataset for every indenter in a way that we get a uniform
histogram for most force ranges covered by the indenters
(more discussions and distribution in Supp. Materials).

B. Network Design
We use a ViT-based [12] network pretrained on DINOv2

[13] as encoder. The zero-shot robustness of the features
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Fig. 2: The indenters used for the training procedure.

across domains helps the model focus on force-related im-
age characteristics, reducing the risk of overfitting to the
training domain. Moreover, force depends on the area and
gel deformation. For this reason leveraging the information
given by the associated depth images can better represent the
tactile-force relationship. Therefore, we design a multi-head
architecture with a regressor and a decoder. The first outputs
the 3D force vector, while the latter outputs the estimated
depth image to condition the encoder. Using the depth as
labels and not as input is necessary to make the network
compatible with sensors that don’t output the depth, e.g.,
the DIGIT sensor. The network takes as input RGB images
Ti ∈ R240×320×3 from the GelSight mini sensor (padded to
R320×320×3, rescaled to R224×224×3) and outputs a feature
vector xi ∈ RK×1. We subtract the no-contact tactile
background image from other tactile images to enhance the
network’s robustness to sensor production inconsistencies
and to help the model focus on contact patches. For the depth
images, we find the minval and maxval of the train set, and
we normalize the images between [minval − ϵ, maxval + ϵ]
to avoid saturation of out-of-distribution samples. The latent
vector xi encoded by the ViT is then fed into the regressor
and the decoder. Specifically, the regressor is an MLP-head
made of four bottleneck layers (a linear layer, followed
by Layer Normalization [38] and a GELU [39] activation
function) and a final linear layer which outputs the estimated
force F̂i ∈ R3×1. The decoder is composed of 4 deconvolu-
tional layers followed by a Leaky ReLU activation function
and outputs the estimated depth D̂i ∈ R224×224×1. To assess
the effectiveness of our design choices, we conducted various
ablation studies discussed in Sec. IV.

Model training. We sample a batch of training data (Ti,
Di, Fi) with size N . We define ϕ(·) to be our ViT feature
extractor, β(·) our bottleneck layers, ρ(·) our linear regressor,
and ψ(·) our depth-reconstruction decoder. We compute the
predicted force of the regressor F̂i and the depth image of
the decoder D̂i as follows:

F̂i = ρ(β(ϕ(Ti))) (1)

D̂i = ψ(ϕ(Ti)) (2)



and we train the network to minimize loss L as follows:

LF (Fi, F̂i) =
1

N

∣∣∣F̂i − Fi

∣∣∣
1

(3)

LD(Di, D̂i) =
1

N

∥∥∥D̂i −Di

∥∥∥
2

(4)

L(LF ,LD) = αLF + βLD (5)

C. Downstream tasks
Object weighing by pushing. We apply our estimator to

perform object weighing by pushing. As shown in Fig. 3, we
mount the GelSight mini tactile sensor on top of the ATI-
Axia80 force sensor to get the ground truth, and we affix
this setup on the robot arm to drive the pushing. We assume
that the pressure distribution of the sensor is uniform, and
so is the mass density distribution of the object, meaning
the center of mass c is in the center. Moreover, we assume
the push force fp to be parallel to the ground and intersect
the center of mass c to avoid any rotation component in the
computation. We assume the object translates in a straight
line. Given an object O with mass m moving with linear
velocity v

fp = mv̇ + fd, (6)

where fd = µmg, with µ the dynamic friction coefficient
between the object and the ground, and g is the gravity
acceleration. Moving the robot with a constant velocity
allows us to weigh the object as mg =

fp
µ .

Controlled deformation of delicate objects. The second
task is the controlled deformation of deformable objects. We
perform quantitative and qualitative experiments. The goal
of the quantitative experiment is to control the deformation
of a plastic cup with a gripper by applying a force estimated
by two GelSight Mini sensors mounted on the gripper. This
experiment involves estimating the required forces to achieve
desired deformations. We use the setup described in the
weighing experiments to determine the ground truths. One
tactile sensor is mounted on the robot arm on top of the
force sensor, while the other is affixed to the ground. The
interaction between the object, placed on top of the second
tactile sensor, and the arm is conducted by incrementally
moving the robotic arm downwards under quasi-static con-
ditions. We simulate a parallel-jaw grasp by aligning tactile
sensors pushing against each other. The force measured by
the force sensor is recorded when the object expands to
the desired percentage. This force value is applied by both
tactile sensors, assuming the same contact area. The defor-
mation percentage is measured by fitting an ellipse to the
plastic cup’s rim using classical image processing methods
in OpenCV [40], treating the cup as a circle when not in
contact and as an ellipse when push force is applied. This
approach makes the deformation computation agnostic to the
relative distance to the camera as we compute deformation
relative to the un-deformed state. The chosen contact area is
the rim of the plastic cup, which can be easily treated and
assimilated to a circle in an unloaded state. This procedure is
repeated 10 times, with slight orientations between trials to
account for minor variations in the contact area. We average
the recorded forces to determine the thresholds. Additionally,
the goal of qualitative results is to stably grasp delicate fruits
while preventing physical damage on , as shown in Fig 1c.

IV. EXPERIMENTAL RESULTS

We validate our model by testing its accuracy performance
on static interactions against objects and on two downstream
tasks using force-tactile feedback, a dynamic object weigh-
ing by pushing, and controlled deformation of deformable
objects. The model used for these experiments is trained for
100 epochs with Adam optimizer and with a learning rate of
5× 10−5 for the backbone and 1× 10−5 for the heads, and
we refer to it as DINO RD.

A. Static force estimation

We perform static force estimation accuracy tests by
comparing the performance of the proposed approach with
other architectures to validate our design choices on unseen
objects. The unseen objects dataset comprises everyday-life
objects like YCB objects that could not be attached to the
robot. We mounted a Robotiq Hand-e gripper on the UR5
robotic arm to grasp the object and touch the sensor with
random relative poses, collecting the data once the contacts
were stable. The tested forces cover all the ranges for the
different axes. We validate the choice of the encoder and
its fine-tuning by replacing it with a pre-trained ResNet
RegressorDecoder (ResNet RD) and by training the architec-
ture with the ViT weights frozen (DINOF R), respectively.
Moreover, we show the role of the multi-head architecture
by comparing it with a network without the decoder (DINO
R). Table I highlights the accuracy on unseen objects for
the models considered. The proposed architecture reaches an
average error of 4.3% over the unseen objects, outperforming
the other methods by at least 20% of relative erorr. Moreover,
the performance stays always between 3%-5.8%, showing a
high robustness across the different shapes and textures. In
particular, the performance on objects with complex textures
such as the strawberry and the wooden spatula or difficult
shapes such as the upper part of the heart highlights the
robustness of the method when compared with the other
approaches. The DINOF RD obtains significantly higher
normalized error with respect to the other methods, showing
how important is the finetuning for the tactile images do-
main. ResNet RD and DINO R achieve good performance,
assessing the quality of the train dataset collection. However,
they present a notable drop of performance when compared
to the proposed method. Furthermore, we can see how their
accuracies vary on a higher range (between 3.3%-7.8%
and 2.3%-7.6% respectively), showing less generalization
capabilities. To further validate our approach, we test the
performance of the estimator on a balanced dataset of 700
images in a range up to 15 N on different GelSight Mini
sensors and gels. We use the sensor and gel used during data
collection (Sensor 1 and Gel 1) and two more sensors and
gels (Sensor 2-3 and Gel 2-3). For this test, the images are
collected using the indenters to precisely test the performance
with the same relative indenter-sensor poses. We consider
all combinations of three gels and three sensors, as shown
in Table II. While DINOF R consistently presents higher
errors under every condition, DINO R demonstrates similar
performance on the training sensor when varying the gels
compared to DINO RD. This result suggests that the network
can achieve outstanding results on the training data and



TABLE I: L1 normalized error on unseen objects of the different architectures.

Method Banana Brown egg Strawberry Marker Wooden spatula Ellipsoid Nectarine Green apple Wrench Heart Mean
ResNet RD 4.0% 5.4% 5.9% 5.2% 7.2% 5.0% 4.5% 4.7% 3.3% 7.8% 5.3%
DINOF RD 6.3% 6.9% 13.2% 11.3% 6.7% 6.8% 3.4% 5.8% 15% 9.2% 8.5%
DINO R 4.9% 6.3% 5.1% 3.6% 5.4% 5.3% 5.2% 6.1% 2.3% 7.6% 5.2%
DINO RD 3.5% 4.5% 3.0% 4.3% 4.9% 3.4% 4.3% 5.0% 3.1% 5.8% 4.2%

sensor, even when the gels are changed. In contrast, the per-
formance on other sensors highlights the importance of the
depth-reconstruction head. Similarly, ResNet RD achieves
the best performance on the training sensor and gel with the
seen objects dataset, but struggles with other combinations,
showing a high dependency on the gel’s mechanical prop-
erties and the sensor’s illumination. This behavior further
emphasizes the role of the ViT backbone. On the other hand,
the proposed method maintains remarkable stability across
all combinations, consistently keeping the error between
4.2% and 6.3%, despite differences between sensors and gels.
This robustness across different sensors enables the use of
the same network for downstream tasks described in Sec.
IV-C, where multiple sensors are required.

TABLE II: Normalized error of the networks for the train
and test sensors varying the gels.

Sensor 1 (train) Sensor 2 Sensor 3

Method
Gel 1 2 3 1 2 3 1 2 3 Mean

ResNet RD 3.9% 5.2% 6.4% 7.7% 5.6% 5.1% 7.2% 5.8% 7.3% 6.0%
DINOF R 7.4% 10.5% 7.4% 11.8% 8.3% 8.5% 7.8% 9.8% 8.0% 8.8%
DINO R 4.9% 4.3% 4.5% 8.0% 5.8% 5.5% 6.6% 6.3% 6.4% 5.8%

DINO RD 4.2% 4.8% 5.2% 6.3% 4.8% 5.1% 6.1% 6.3% 6.2% 5.4%

B. Calibration

To compensate for sensor-specific manufacturing varia-
tions, we propose a reproducible calibration procedure using
a 3D printable setup and a set of off-the-shelf weights, with
more details available in the supplementary material. The
setup consists of a bottom mount to fix the sensor and a
rotatable upper mount with a fixed indenter. By placing the
weights in known positions on the upper mount, users can
collect images with known forces, registered via our force
sensor. In Tab. III we test the performance of this approach
collecting 100 images with sensor 2 and sensor 3 using
respectively gel 1 and gel 2 along with a DIGIT sensor, and
we test on the same dataset collected for those combinations
used for Tab. II. The 100 images are collected using the Big
Sphere indenter shown in Fig. 2, intentionally not included in
this test dataset. For the Gelsight sensors, the results show
that our method reaches performance comparable to those
obtained by training combination of sensor and gel, while the
same cannot be said for the other methods. Moreover, after
calibration, our method maintains nearly the same accuracy
on the uncalibrated sensors, with only a negligible average
error increment of 4% in the normalized error on those
sensors, compared to the 25%, 14%, and 12% increases
observed for ResNet RD, DINOF , and DINO R, respectively
(e.g., a 10% increment of 5% is 5.5%). Regarding the DIGIT
sensor, due to the relevant differences in light distribution
and mechanical properties, we need to finetune the entire

regressor head. The high error rate of the ResNet-based
architecture suggests that it struggles to generalize across
different sensor architectures. For the ViT, the results confirm
that conditioning the backbone with a depth-reconstruction
head is crucial for achieving good generalization. Specifi-
cally, DINO R exhibited triple the error compared to our
approach, and double the error compared to the frozen
backbone. This suggests that the depth-reconstruction head
conditions the encoder to learn force-related features rather
than sensor specific features. We further demonstrate this
characteristic by comparing the mean of the attention layers
of the three different encoders in the attached video.

TABLE III: Normalized error of the networks for unseen
GelSight Mini sensors and DIGIT sensor after finetuning.

ResNet RD DINOF R DINO R DINO RD
Sensor 2 - Gel 1 4.7% 7.2% 5.4% 4.2%
Sensor 3 - Gel 2 4.9% 7.9% 6.0% 4.3%

DIGIT 53.4% 16.0% 29.6% 9.2%

C. Downstream tasks
Object weighing by pushing. For the weighing experi-

ments, we utilized the sensor employed during the training
procedure. We consider three different objects, shown in
Fig. 3: a 1Kg calibration weight made of metal, a caliber
cylinder full of water (0.559 Kg) or almost full (0.503 Kg),
and a bottle of glass of 0.63 Kg. These objects differ in
contact shape, material, texture, and weight. Five pushes of
approximately 15 seconds each per object are conducted at a
controlled low velocity to minimize errors from the wooden
table surface’s imperfections and reduce the object’s rota-
tional component, which is not considered in the estimation.
The z component of the estimated force is averaged for all
experiments for both the GelSight and the force sensor, and
the force error is computed by subtracting the two averages.
The dynamic friction value is determined by using the force
sensor’s measurements as the ground truth. Table IV reports
the forces estimated by the tactile sensor and force sensor,
along with the corresponding error measured and subsequent
weight estimated. The network shows good performance on
weight estimation ranging from 6% to 10%. This result
further validates the need for a high-precision estimator,
demonstrating how differences of just 0.06N can affect the
downstream tasks.
TABLE IV: Results of weighing objects by pushing experi-
ments for the four objects considered.

weight[Kg] Weight(1) Cyl.(0.503) Cyl.(0.559) Bottle(0.630)
Force GelSight (Our) [N] 2.05 0.87 0.98 1.02

Force ATI (GT) [N] 2.24 0.96 1.06 1.08
Force error [N] 0.2 0.09 0.09 0.06

Weight error [Kg] 0.1 0.04 0.05 0.04



1 Kg 0.559 Kg

0.630 Kg 0.503 Kg

Fig. 3: We show sampled frames from trajectories of weigh-
ing by pushing. We consider objects that differ in weight,
shape, and material.

It is important to point out some non-idealities that
contribute to the estimation error. The friction value is fitted
to match the force estimation from the force sensor, but
the force sensor itself is also subject to errors. The force
sensor tends to drift slightly towards higher values over time,
leading to increased error as the push time increases since
the tactile sensors consistently predicted lower forces than
the force sensor. This behaviour is more evident when the
force sensor is in motion, as in this task. Unlike the data
collection, where the force sensor was tared before every
contact, in this task is not possible to tare the force sensor
for all the pushing period, leading to a higher drift of forces.
However, the accuracy is consistent regardless the instrument
error, the texture or the contact surface shape, which varies
from flat surface to curves with different radii of curvature,
not seen during the training procedure. Further details are
shown in the video.

Grasping of delicate objects. Fig. 4 highlights the
quantitative results of the interaction experiments with the
plastic cup. We gradually close the gripper on the rim
of the cup until either of the sensors reaches the target
force in the z component, then measure the percentage
of deformation. This experiment is repeated 10 times, and
the results are averaged. The ground truth values show
deformations of 2.28% and 3.36%, while the tactile estimator
measures deformations of 2.27% and 3.32% for the two
target forces, with a deformation error of less than 0.05%.
It is important to note that the discrete steps of the gripper
limit the experiment’s precision, as also highlighted in [41].
Therefore, the desired force could not always be reached, and
the closest step to the desired value is chosen. Additionally,
the rim is a shape different from those seen in the training set
(slimmer), further validating the generalization capabilities
of our approach. Regarding the qualitative experiments, we
empirically determine two force thresholds: gentle grasp
(minimum force to hold an object) and firm grasp (maximum
force before damage). We tested these thresholds on banana,
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Fig. 4: Grasping experiments with a plastic cup. We close
the gripper to get f2 = 1.74 N and f3 = 2.1 N from the
force sensor and our method in the first and second row,
respectively.

tomato, mushroom, and strawberry, finding specific values
for each. We gradually closed the gripper, guided by tactile
sensor feedback (see Fig. 1), to reach these thresholds. We
recorded success rates and provide extensive details in the
accompanying video.

V. LIMITATIONS AND CONCLUSIONS

Limitations. While the presented results demonstrate
state-of-the-art accuracy in static and dynamic force estima-
tion for vision-based tactile sensors, there are still areas for
improvement. As outlined in Sec. III-A, there is a significant
variance in sensing range across axes. This characteristic
emanates from the flat and soft gel which cannot tolerate
higher shear forces. Moreover, even if the approach can
generalize on different GelSight Mini sensors and achieve
optimal performance thorugh the calibration procedure, it
cannot reach the same performance on other vision-based
tactile sensors with limited data, even if the results are
promising. We aim to tackle the problem in future works.

Conclusions. In FeelAnyForce, we introduced the first
force estimator for vision-based tactile sensors capable of
generalizing on different sensors achieving high accuracy
regardless of shape and texture on a large range of forces.
We meticulously collected a real-world dataset of associated
forces, RGB images, and depth images sampled through the
interaction with specific indenters. Leveraging RGB-D tactile
images from the GelSight Mini sensor, our transformer-
based force estimator demonstrated exceptional performance
in accurately inferring 3D force vectors. We demonstrated
robust performance of the model in both static and dynamic
conditions through comprehensive experiments and ablation
studies. Furthermore, our investigations into the model’s
adaptability to different GelSight Mini sensors demonstrate
that the community can readily utilize the model, with
promising results on DIGIT sensors. We release model, and
data, hoping our work can assist the community in advancing
research in multimodal tactile sensing.



REFERENCES

[1] S. Luo, J. Bimbo, R. Dahiya, and H. Liu, “Robotic tactile
perception of object properties: A review,” Mechatronics, vol. 48,
pp. 54–67, 2017. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0957415817301575

[2] Q. li, O. Kroemer, Z. Su, F. Veiga, M. Kaboli, and H. Ritter, “A
review of tactile information: Perception and action through touch,”
IEEE Transactions on Robotics, vol. PP, pp. 1–16, 07 2020.

[3] W. Yuan, S. Dong, and E. H. Adelson, “Gelsight: High-
resolution robot tactile sensors for estimating geometry and
force,” Sensors, vol. 17, no. 12, 2017. [Online]. Available:
https://www.mdpi.com/1424-8220/17/12/2762

[4] M. Lambeta, P.-W. Chou, S. Tian, B. Yang, B. Maloon, V. R. Most,
D. Stroud, R. Santos, A. Byagowi, G. Kammerer, D. Jayaraman, and
R. Calandra, “Digit: A novel design for a low-cost compact high-
resolution tactile sensor with application to in-hand manipulation,”
IEEE Robotics and Automation Letters, vol. 5, no. 3, p. 3838–3845,
Jul. 2020. [Online]. Available: http://dx.doi.org/10.1109/LRA.2020.
2977257

[5] B. Ward-Cherrier, N. Pestell, L. Cramphorn, B. Winstone, M. E.
Giannaccini, J. Rossiter, and N. F. Lepora, “The tactip family: Soft
optical tactile sensors with 3d-printed biomimetic morphologies,”
Soft Robotics, vol. 5, no. 2, pp. 216–227, 2018, pMID: 29297773.
[Online]. Available: https://doi.org/10.1089/soro.2017.0052

[6] S. Suresh, Z. Si, J. G. Mangelson, W. Yuan, and M. Kaess, “Shapemap
3-d: Efficient shape mapping through dense touch and vision,” 2022.

[7] A.-H. Shahidzadeh, S. J. Yoo, P. Mantripragada, C. D. Singh,
C. Fermüller, and Y. Aloimonos, “Actexplore: Active tactile explo-
ration on unknown objects,” 2023.
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