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Fig. 1.

Top row: Robots (UR-10 and a quadrotor) used to physically interact (or nudge) with the objects to get motion cues for segmenting objects in a

clutter. Bottom row (left to right): Initial Configuration of a cluttered scene and the first nudge being invoked, final nudge is invoked, final Segmentation
of the cluttered scene. Green circles show the nudge operation. All the images in this paper are best viewed in color at 200% zoom on a computer screen.

Abstract— Recent advances in object segmentation have
demonstrated that deep neural networks excel at object
segmentation for specific classes in color and depth images.
However, their performance is dictated by the number of classes
and objects used for training, thereby hindering generalization
to never seen objects or zero-shot samples. To exacerbate the
problem further, object segmentation using image frames rely
on recognition and pattern matching cues. Instead, we utilize
the ‘active’ nature of a robot and their ability to ‘interact’ with
the environment to induce additional geometric constraints for
segmenting zero-shot samples.

In this paper, we present the first framework to segment
unknown objects in a cluttered scene by repeatedly ‘nudging’ at
the objects and moving them to obtain additional motion cues at
every step using only a monochrome monocular camera. We call
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our framework NudgeSeg. These motion cues are used to refine
the segmentation masks. We successfully test our approach to
segment novel objects in various cluttered scenes and provide an
extensive study with image and motion segmentation methods.
We show an impressive average detection rate of over 86% on
zero-shot objects.

SUPPLEMENTARY MATERIALS

The supplementary video is available at http://prg.
cs.umd.edu/NudgeSeq.

I. INTRODUCTION AND PHILOSOPHY

Perception and Interaction form a complimentary synergy
pair which is seldom utilized in robotics despite the fact that
most robots can either move or move a part of their bodies
to gather more information. This information when captured
in a smart way helps simplify the problem at hand which is
expertly utilized by nature’s creations. Even the simplest of
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Fig. 2. A conceptual graph of variation of complexity in perception,

planning and control with task philosophy. As a keen observation, the
algorithmic complexity decreases with increase in the manipulator motion.

biological organisms relies on this active-interactive synergy
pair to simplify complex problems [1]. To this end, the
pioneers of robotics laid down the formal foundations
that captured the elegance of action-interaction-perception
loops. The amount of computation required for performing
a certain task can be supplemented by exploration and/or
interaction to obtain information in a manner that simplifies
the perception problem. Fig. 2 shows a representative plot
of how complexity in perception, planning and control vary
with different design philosophies. We can observe that there
are different amounts of activeness captured by the number
of degrees of freedom in which the agent can move. The
amount of interactiveness can vary from being able to nudge
to grasp (pick-up) to complex manipulation (screwing a lid).
One can trade off the complexity in planning and control to
that of perception by the choice of task philosophy.

We present a framework that captures this elegance to
address the problem of segmentation of objects of unknown
shape and type (also called zero-shot objects). Such a method
would serve as an initial guess to learn new objects on a
robot by interacting with it — just like how babies learn about
new objects. To our knowledge, this is the first work which
addresses the problem of zero-shot object segmentation from
clutter by iterative interaction using a grayscale camera. We
formally describe our problem statement with a list of key
contributions next.

A. Problem Formulation and Contributions

The question we address is as follows: How can we
segment objects of unknown shape and type (zero-shot
samples) from a cluttered scene by interacting (nudging) with
the objects using a monochrome monocular camera?

The key contributions of this paper are given below:

o We propose an active-interactive nudging framework
called NudgeSeg for segmenting zero-shot objects from
clutter using a monochrome monocular camera.

o Conceptualization of uncertainty in optical flow to find
the object clutter pile.

o Extensive real-world experiments on different robots
including a quadrotor and a robotic arm to show that
our framework is agnostic to the robot’s structure.

We make the following explicit assumptions in our work:

o The surface on which the cluttered object pile is located
is planar.

e All the individual
non-deformable.

objects in the clutter are

B. Related Work

We subdivide the related work into three parts: instance
and semantic segmentation, motion segmentation and
active—interactive conceptualization.

Instance and Semantic Segmentation: The last few years
have seen a renewal of interest in instance and semantic
segmentation after the deep learning boom. Long et al. [2]
proposed the first approach to adopt fully Convolutional
Neural Networks (CNNs) for semantic segmentation. Later,
CNN meta-architecture approaches [3] occupied top spots in
recent object segmentation challenges. These were followed
by TensorMask [4] that used an alternative sliding-window
network design to predict sharp high-resolution segmentation
masks. Recently, a region-based segmentation model was
introduced in [5] that can produce masks with fine details
pushing the accuracy of region-based approaches even
further.

Motion Segmentation: The problem of segmenting
motion into clusters which follow a similar 3D motion has
been thoroughly studied in [6], [7]. Later, several methods
were introduced that use an expectation maximization
approach for segmentation [8], [9] to improve the results
further for in the wild sequences. Some recent work
[10]-[12] address more complex scenarios with optical
flow inputs, considering motion angle as the motion
information for segmentation. Furthermore, there has been
extensive progress in the field of event camera based motion
segmentation in the past decade. These event camera-based
approaches commonly utilize event alignment methods
and expectation-maximization [13], [14] schemes to obtain
segmentation masks for independently moving objects.

Active and Interactive Approaches: The first
conceptualization of Active vision was presented in
Aloimonos et al. [15] and Bajcsy et al. [16] where the
key concept was to move the robot in an exploratory way
that it can gather more information for the task at hand.
The synergy pair to active approaches are the ones which
involve interaction between the agent and its environment —
interactive approach which was formally defined in [17]. For
robots with minimal amount of computation, it’s activeness’
and ‘interactiveness’ take precedence to gather more
information in a way to simplify the perception problem.
In other words, with more exploration information, one can
trade-off the amount of sensors required or computational
complexity to solve a given task. Such an approach has been
demonstrated to clear or segment a pile of unknown objects
using manipulators [18]-[21] utilizing depth and/or stereo
cameras. Similar concepts of interaction have also been



used to infer the object properties like shape and weight
using only haptic feedback [22]. Recently, [23] introduced
the concept of learning to segment by grasping objects
randomly in a self-supervised manner using color images.

Our contribution draws inspiration from all the
aforementioned domains and induces motion by iteratively
nudging objects to generate motion cues to perform motion
segmentation to segment never seen objects.

C. Organization of the paper

We describe our proposed NudgeSeg segmentation
framework in Sec. II in detail with subsections explaining
each step of the process. In Sec. III we present our evaluation
methodology along with extensive comparisons with other
state-of-the-art segmentation methods along with detailed
analysis. We then provide discussion along with thoughts
for future directions in Sec. IV. Finally, we conclude our
work in Sec. V.

II. NUDGESEG FRAMEWORK

Our framework utilizes both concepts of active and
interactive perception for its different parts. The first part
utilizes active perception ideology where the camera is
moved to obtain a hypothesis of where the object pile
is located (foreground-background segmentation). Next we
utilize the interactive perception ideology to repeatedly
nudge/poke objects to gather more information for obtaining
a segmentation hypothesis. Both the parts are explained in
detail next.

A. Active perception in NudgeSeg

As explained earlier, the precursor to object segmentation
is to find the pile of objects. Since, our robot(s) is not
equipped with a depth sensor, there is no trivial way to obtain
the segmentation of the object pile. Hence, we utilize the
activeness of the robot to obtain a function correlated with
depth by moving the robot’s camera.

Let the image captured at time index ¢ be denoted as Z;.
The dense pixel association matrix also called optical flow
[24] is given by p;; between frames ¢ and j. Note that, these
optical flow equations use the pinhole camera projection
model.

The boundary between the foreground and background is
correlated to the amount of occlusion a pixel “experiences”
between two frames. This occlusion is inversely related
to the condition number ~ of the optical flow estimation
problem. Although there is no direct way to obtain x, we
can obtain the dual of this quantity, i.e., the estimated
uncertainty p. In particular, we utilize Heteroscadatic
Aleatoric uncertainty [25] since it can be obtained without
much added computation overhead. Details of how p is
obtained from a network is explained in Sec. II-D.

Once, we obtain p between two frames, the next step is to
find the first nudge direction. To accomplish this, we perform
morphological operations on p to obtain the blobs which are
a subset of the object pile {Oy} (k is the blob index). We
then find the convex hull of this set C ({O}). The first poke

Fig. 3. First nudge policy using uncertainty in optical flow. Hotter colors
represents higher uncertainty. The dashed line represents the convex hull of
the cluttered scene and the arrow represents the direction of first nudge at
point Aj.

direction is obtained in two steps. First, we find the blob
which has the highest average uncertainty value (since it will
have the lowest noise in p) which is mathematically given as
argmax;, E (p (O)). We then compute the first nudge point
A1 which is given as the closest point to the centroid of blob
k we found earlier:

A = argmax||C(Ok)x — (Ok)]l2 (1

Here, x indexes each point in C (Oy,) and A denotes the
centroid of A. We then nudge the objects at Aj with our
nudging tool (See Fig. 1). Fig. 4(a) summarizes the active
segmentation part.

B. Interactive perception in NudgeSeg

The basis of our interactive perception part is that we can
cluster rigid parts of the scene using optical flow p (See Sec.
II-D for details on how p is obtained). Since, we generally do
not obtain a complete segmentation of the scene by clustering
optical flow from a single nudge, we propose a iterative
nudging strategy based on the statistics of the current cluster
hypothesis (See Sec. II-B.1 for more details).

In order to split the current scene based on optical flow
(before and after first nudge) into multiple segments, we
employ Density-based Spatial Clustering of Applications
with Noise (DBSCAN) [26] since it does not require the
number of clusters as the input. The following criteria are
used to assign two points X and Y to the same cluster:

IX — Y], < 7 @
[Mx = Myl <Tm 3)
min (|Ax — Ay|, 27 — |Ax — Ay|) <74 4)

Here, 74,704 and 74 are user-defined thresholds. The
input to DBSCAN is 4-dimensional data consisting of the
image coordinates, optical flow magnitude and direction:
[x M A]T. Points which do not belong to any cluster
are removed as noise points since their density is very low.
We repeat this step iteratively until we reach the termination
criterion as described in Sec. II-C. We denote segmentation
hypothesis output at each iteration (also called time index
1) as H,;.



Fig. 4.

1) Nudging Policy

Firstly, we compute the covariance matrix {%F} of the
optical flow p for all clusters of the hypothesis {HF} (k is
the cluster index) and is given by

S=E(0-EGD) @-EG))  ©

We then use ¥¥ to find the Eigenvectors and Eigenvalues
for each cluster given by vf . vk and AF . K
Then, we pick the cluster k£ with the second largest condition
number k, = [Amul/|\u| (since we do not want to nudge
the object with the highest motion information, i.e., best k).
The nudging direction is chosen as the Eigenvector direction
Umin for the cluster chosen before. However, if k., < 7, we
nudge the cluster with largest s since the quality of motion
cue corresponding to k, is noisy. Finally, we nudge using a
simple Proportional-Integrative-Differential (PID) controller
servoing the nudge point. After the current nudge i, we
propagate the mask to the new frame j by warping using
optical flow. We call this propagated mask A.

2) Mask Refinement

Finally, for each nudge step, once the masks are
propagated, the robot aligns itself to initiate the next nudge
for new motion cues. After the next nudge is invoked, a
new H is generated which may or may not overlap with
the previous propagated masks. To find the updated masks,
*H; U ¥, is computed. Refer Algorithm 1 for the mask
reﬁnement details. Fig. 4(b) and (c) each represents one step
(single nudge) of the interactive segmentation part.

C. Verification and Termination

If the mean IoU between H,; and #H,;,, have not changed
more than a threshold, we invoke the verification step. In this

(a) Active perception in NudgeSeg framework. Top row shows the movement of the camera. Bottom row shows the image inputs and uncertainty
p. (b) and (c) Interactive perception in NudgeSeg framework. Top row shows the object nudging. Bottom row shows the input images (before and after
nudge), optical flow representation and segmentation hypothesis where colors indicate cluster membership.

Algorithm 1: Segment Propagation And Mask
Refinement

Data: Optical Flow p¥, Segmentation Hypothesis of

k masks {H;} in i‘" frame.
Result: Updated Segmentation Hypothesis {#;} in
4t frame.

1if *H; N FH; > 75 then
2 kf}:lj N k+1ij

Update Masks;

MM — max(MH;, FH;) — (FH; 0H);
3 else
4 ‘ kHj —>k+1Hj Create New H;
5 end

step, we nudge each segment independently in a direction
towards its geometric center to ‘“see” if the object splits
further. This is performed once nudge for every cluster and
if any segment splits into more than one, we go back to the
procedure described in Sec. II-B for those clusters, if not,
we terminate.

D. Network Details
We obtain optical flow p using a Convolutional Neural

Network (CNN) based on PWC-Net [27]. We use the
multi-scale (L scales) training loss given below:

D (puii) = Do (I =Bi) 1) ©

where [ is the pyramid level, P and p; denotes the ground
truth and predicted optical flows at level [ respectively. o; is
the weighing parameters for [ level. We refer the readers
to [27] for more network details.



Finally, to obtain the Heteroscadatic Aleatoric uncertainty
[25], we change the output channels from two to four in the
network, i.e., p (two channels) and the predicted uncertainty
p (two channels, one for each channel f)) is obtained in a
self-supervised way and is trained using the following final
loss function

||151 ) —151 (x) |11

= (
L= ;QZEX <1oge (1 + e(Pl(X)+5))> +
aEy loge 1+epz(x) %
2 el (1))

Here, € is a regularization value for avoiding numerical
instability and is chosen to be 1073. Also note that, the
uncertainty is obtained at every level [ but we utilize the
average values across levels scaled by «; as an input for our
framework. Refer to first row and second column of Fig. 6 for
the uncertainty outputs from our network. We train our model
on ChairThingsMix [28]. We do not retrain or fine-tune the
PWC-Net on any of the data used in our experiments.

[II. EXPERIMENTAL RESULTS AND DISCUSSION
A. Description of robot platforms — Aerial Robot and URI0

Our hardware setup consists of a Universal Robot UR10
and a custom-built quadrotor platform — PRGLabrador500a!
(Refer Fig. 1). A 3D-printer end-effector is mounted on both
the robots for the nudging motion. PRGLabrador500« is
built on a S500 frame with DJI F2312 960KV motors and
94502 propellers. The lower level attitude and position hold
controller is handled by ArduCopter 4.0.6 firmware running
on Holybro Kakute F7 flight controller, bridged with an
optical flow sensor and a one beam LIDAR as the altimeter
source. Both the robots are equipped with a Leopard
Imaging M021 camera with a 3mm lens that captures the
monochrome image frames at 800 x 600 px resolution and 30
frames/sec for our segmentation framework. All the higher
level navigational commands are sent by the companion
computer (NVIDIA Jetson TX2 running Linux for Tegra®)
for both the robots.

B. Quantitative Evaluation

1) Evaluation Sequences

We test our NudgeSeg framework on four sequences of
objects. For evaluation of our framework, we average the
results over 25 trial runs for each sequence.

For each iteration of an evaluation sequence, IN; objects
are randomly chosen from a given range of objects
N (N; < N) and are placed on a table in a random
configuration space. Now, let A’ be the total number of
nudges required to solve the segmentation task for a given
configuration and AL, be the average number of nudges
for all the trials of a sequence. Refer to Table I for details
on the sequences and Fig. 5 for a visual depiction of the
sequences. It is important to note that objects in sequences
GrassMoss and YCB-attached (Fig. 5 (a) and (d))

https://github.com/prgumd/PRGFlyt /wiki
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Fig. 5. Top Row: Sample objects used in Table I as the evaluation
sequences. Bottom Row: Sample cluttered scene for each sequence.

TABLE I
DESCRIPTION OF EVALUATION SEQUENCES.

Sequence Name N Aavg  Reference Fig.

GrassMoss 5-8 5.7 S5a
Rocks 5-7 52 5b
YCB 59 63 Sc
YCB-attached 4-8 4.8 5d

contains adversarial samples
permanently “glued” together.

of objects that are been

2) State-of-the-art Methods

We compare our results with three state-of-the-art
methods: 0-MMS [14], Mask-RCNN [3] and PointRend [5].

0-MMS [14] utilizes an event camera rather than a
classical camera for segmenting the moving objects. These
event cameras output asynchronous log intensity differences
caused by relative motion at microsecond latency. This class
of sensor differs from the traditional camera as it outputs
events which are sparse and have high temporal resolution.
It relies on large displacement of objects between time
intervals. As event data is highly dependent on motion, we
induced large motion in the objects by a single large nudge
as presented in the original work.

We also compare our results with single frame passive
segmentation methods (no induced active movement):
Mask-RCNN and PointRend which were trained on
the train2017 (~123K images) of MS-COCO [29]
dataset containing common objects. Note that, YCB object
sequences [30] as shown in Figs. 5c and 5d form a subset of
the classes in MS-COCO dataset. However, the sequences
shown in Figs. 5a and 5b are zero-shot samples (classes not
present in MS-COCO dataset).

3) Evaluation Metrics

Before we evaluate and compare the performance of
NudgeSeg with the aforementioned methods, let us first
define the evaluation metrics used. Intersection over Union
(IoU) is one of the most common and standard evaluation
criteria use for comparing different segmentation methods.
IoU is given by:

IoU =(DNG)/(DUG) ®)

where D is the predicted mask and G is the ground truth
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mask. We define Detection Rate (DR) on the basis of IoU
for each cluster as

Num. Success

Success := [oU > 7; DR = )

Num. Trials

We define DR at two accuracy levels with 7 of 0.5 and
0.75 which are denoted as DRsy and DRys respectively.
For passive segmentation methods, we compute IoU,,
DR5g,; and DRy75 ; for an image after ever nudge (indexed
as 7) along with the initial configuration. The final IoU,
DRy and DR75 for every trial (which includes multiple
nudges) are given by the highest accuracy among all the
time indexes for a fair comparison. Finally, we compute the
average results across trials for each scenario as mentioned
before.

4) Observations

Now, let us compare NudgeSeg with other state-of-the-art
segmentation methods using the aforementioned evaluation
metrics. Table II shows the performance of our method on
different sequences and compares it with different methods
(Refer III-B.1). We compare PointRend and Mask-RCNN
segmentation methods on both RGB and monochrome
images. Since NudgeSeg has more motion cues by iterative
nudging the cluttered scene, it performs better than 0-MMS
which relies on motion cues from only one large nudge.
Furthermore, the active segmentation approaches — NudgeSeg
framework and 0-MMS substantially outperform the passive
segmentation methods — PointRend and Mask-RCNN at
the zero-shot samples which highlights the usability of
active methods. This is due to the iterative segmentation
propagation and the elegance of the sensor-motor loops
introduced (nudge the part of the scene where we want to
gather more information). Such an active method can be used
to train a passive method like Mask-RCNN or PointRend in
a self-supervised manner, thereby mimicking the memory in
animals.

Since, the generalization performance of most passive
segmentation methods are subpar to that of the active
methods, however their masks are sharper during correct
segmentation because they incorporate memory information.
To capture this essence, we define a new metric JoU, which
is given as the Intersection over Union for successfully
detected objects. As we stated before, we obtain the
segmentation results after every nudge and the highest
accuracy results are used. Finally, we compute the average
results across trials for each scenario as mentioned before.

From Table II(d), we see that the masks predicted by
Mask-RCNN and PointRend are sharper (better overlap
with the ground truth) when the adversarial objects are
excluded and they approach (decrease) the results of
the active methods since the IoU values are averaged
for success of IoU > 0.5. We can clearly observe that
incorporating memory information can significantly boost
the segmentation performance around the edges which are
useful for grasping. Also, note that results for Mask-RCNN
and PointRend are slightly lower than the active methods

Fig. 6.  For each sub-figure: First row (From left to right): Sample
monochrome input image, Uncertainty in optical flow p, Segmentation
hypothesis after first nudge, Final segmentation masks. Second row: (From
left to right): Outputs of 0-MMS [14], PointRend (color input), PointRend
(mono input), Mask-RCNN (color input), Mask-RCNN (mono input). Note
that in (a) and (d), the objects highlighted with a red boundary in the top left
image of the respective sequences are ‘glued’ together and are considered
to be adversarial samples. This image is viewed best in color at 400% zoom
on a computer screen.

when no color information is given as the input, showing that
these networks rely on color boundaries for segmentation.

5) Analysis

For most robotics applications, the performance of the
algorithm is also governed by the camera sensor quality.
Missing data, false colors, bad contrast, motion blur and
low image resolution generally cause robotics algorithms
to fail. Such erroneous sensor behaviour often leads to a
large amount of errors in fundamental properties like optical
flow. To test the limitations of our framework, we artificially
inject error in optical flow, both in angle and magnitude
separately; and evaluate our framework performance under
these conditions. We add uniform noise U (€) at each pixel
to both A and M (Refer II-B for definitions) independently
where [—¢, €] is the bound on noise. The perturbed (noise
induced) magnitude and angle of the flow vectors are denoted
as M and A respectively and are given by



Fig. 7.

TABLE I
EVALUATION WITH DIFFERENT SEGMENTATION METHODS FOR
MULTIPLE SEQUENCES.

Sequence NudgeSeg  0-MMS [14] PointRend [5] Mask-RCNN [3]
Sensor Used Mono Event Color Mono Color Mono
(a) ToU 1

GrassMoss 0.82 0.77 0.14 0.14 0.12 0.10
Rocks 0.87 0.63 0.16 0.17 0.11 0.13
YCB 0.68 0.58 0.44 0.42 0.36 0.39

YCB-attached 0.70 0.61 0.38 0.35 0.32 0.32
(b) DR5o (%)

GrassMoss 89.6 64.3 11.1 9.4 8.2 6.7
Rocks 94.1 30.2 14.7 14.1 9.5 7.7
YCB 80.9 28.4 424 40.6 36.1 39.3

YCB-attached 82.0 322 37.7 31.4 32.1 34.9
(c) DR75(%) 1

GrassMoss 86.3 64.4 10.1 9.9 7.4 6.3
Rocks 91.1 309 13.5 132 72 6.1
YCB 745 423 38.8 35.1 32.9 342

YCB-attached 76.2 324 33.1 27.0 272 293
(d) ToUs 71 (for DR50)

GrassMoss 0.88 0.84 0.83 (0.91) 0.80 (0.87)  0.81 (0.90) 0.79 (0.88)
Rocks 0.89 0.80 0.97 0.95 0.91 0.88
YCB 0.77 0.70 0.96 0.88 0.92 0.85

YCB-attached 0.75 0.72 0.79 0.77 0.75 0.72
Note: (-) represents the IoUg after the removal of adversarial examples in GrassMoss sequence.
TABLE III

EVALUATION OF GRASSM0ss SEQUENCE WITH DIFFERENT AMOUNT OF
ERRORS IN A AND M.

Err. Metric No Error ey =5 ey =10 ey =20 €4 =10° €4 =20° €4 =30°
IToU 1 0.82 0.77 0.70 0.64 0.62 0.41 0.23
DRso(%) T 89 82 74 68 61 60 49
DR75(%) 1 86 7 69 60 46 37 17
If the injected error is ot stated explicitly, it is taken to be zero.
vi Ulem)
My=[14+4—T"~|M (10)
X X
( 100
Ax = (1 +U(en)) Ax (11)

We evaluate our framework on a different e, and €4
values of {0,5,10,20}% and {0, 10,20,30}° respectively.
Fig. 7 shows a qualitative result on how error in optical flow
affects the first segmentation hypothesis 7{;. Note that the
error in flow is added to the PWC-Net output which has the
angle error of ~5% as compared to the ground truth optical
flow. The IoU performance in H; significantly decreases
when the noise is added to A as opposed to M. This
shows that optical flow angle is more important for active
segmentation methods as compared to magnitude and such
a distinction in evaluation is often missing in most optical
flow works.

Table III shows the performance of GrassMoss sequence
with different errors in 4 and M. The DR75 drops
significantly from 86% to ~17% with a +30° error in A
(about 6x the error than in PWC-Net). Clearly, accurate
optical flow computation is essential for active and interactive

Qualitative Results with (a) no error, e 4 = 0, exq = (b) £5%, (¢) £10%, (d) £20%, exr = 0, e4 = (e) £10°, (f) £20°, (g) +£30°.

segmentation approaches. Hence, speeding up the neural
networks by quantizing or reducing the number of parameters
will dictate the performance of interactive segmentation
methods.

We also evaluate passive segmentation methods on
the sample non-cluttered images shown in Fig. 5 (top
row). Both PointRend and Mask-RCNN have similar
performance in GrassMoss and Rocks sequences but
perform substantially better for YCB resulting in about 94%
DRj5o for both the methods showing that the background
clutter and the object occlusions can significantly affect the
segmentation performance.

IV. DISCUSSION AND FUTURE DIRECTIONS

Depending on the Size, Weight, Area and Power (SWAP)
constraints, the robot may be equipped with multiple sensors
including a depth camera. Such sensors would be an essential
element to allow nudging in three dimensions. In such a
case, where to nudge? would also be computed using a path
planner to avoid collisions.

However, one can model the where to nudge? problem
using reinforcement learning to obtain a more elegant
solution. In particular, we envision a reward function based
on the success criterion of the NudgeSeg framework for
delayed rewards. This can help learn more generalized
optical flow along with segmentation which would work
better for zero-shot objects in a true robotics setting by
utilizing the sensori-motor loops. Here, the reinforcement
agent would predict where to nudge and it’s estimated reward
in a manner that is agnostic to the actual class of the objects.

To improve our framework further, one can utilize a soft
suction gripper which can adapt to different morphologies
of the object shape. In particular, the suction gripper can be
used after each nudging step to pick the unknown object and
“remove” it from the cluttered pile to make the perception
problem even easier.

By combining the two aforementioned directions, we
believe that the active—interactive segmentation model is the
future which aligns beautifully with the life-long learning
paradigm [31].

V. CONCLUSIONS

We present an active-interactive philosophy for
segmenting unknown objects from a cluttered scene
by repeatedly ‘nudging’ the objects and moving them
to obtain additional motion cues. These motion cues (in
the form of optical flow) are used to find and refine
segmentation hypothesis at every step. Our approach only
uses a monochrome monocular camera and performs better



than the current state-of-the-art object segmentation methods
by a large margin for zero shot samples. We successfully
demonstrate and test our approach to segment novel
objects in various cluttered scenes and provide an extensive
comparison with passive and motion segmentation methods
on different mobile robots: a quadrotor and a robotic arm.
We show an impressive average detection rate of over 86%
on zero-shot samples. We firmly believe that such a method
can serve as the first step to learn novel objects to enable a
true lifelong learning system.
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