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Abstract

We investigate how machine learning schemes known as a Reservoir
Computers (RCs) learn concepts such as ‘similar’ and ‘different’,and other
relationships between pairs of inputs and generalize these concepts to
previously unseen types of data. RCs work by feeding input data into a high-
dimensional dynamical system of neuron-like units called a ’reservoir’ and
using regression to train ’output weights’ to produce the desired response.
We study two RC architectures, that broadly resemble neural dynamics.
We show that an RC that is trained to identify relationships between image-
pairs drawn from a subset of handwritten digits (0-5) from the MNIST
database generalizes the learned relationships to images of handwritten
digits (6-9) unseen during training. We consider simple relationships
between the input image pair such as: same digits (digits from the same
class), same digits but one is rotated 90◦, same digits but one is blurred,
different digits, etc. In this dataset, digits that are marked the ’same’ may
have substantial variation because they come from different handwriting
samples. Additionally, using a database of depth maps of images taken
from a moving camera, we show that an RC trained to learn relationships
such as ‘similar’ (e.g., same scene, different camera perspectives) and
‘different’ (different scenes) is able to generalize its learning to visual
scenes that are very different from those used in training. RC being a
dynamical system, lends itself to easy interpretation through clustering
and analysis of the underlying dynamics that allows for generalization. We
show that in response to different inputs, the high-dimensional reservoir
state can reach different attractors (i.e. patterns), with different attractors
representative of corresponding input-pair relationships. We investigate the
attractor structure by clustering the high dimensional reservoir states using
dimensionality reduction techniques such as Principal Component Analysis
(PCA). Thus, as opposed to training for the entire high dimensional
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reservoir state, the reservoir only needs to learn these attractors (patterns),
allowing it to perform well with very few training examples as compared to
conventional machine learning techniques such as deep learning. We find
that RCs can not only identify and generalize linear as well as non-linear
relationships, but also combinations of relationships, providing robust and
effective image-pair classification. We find that RCs perform significantly
better than state-of-the-art neural network classification techniques such as
convolutional and deep Siamese Neural Networks (SNNs) in generalization
tasks both on the MNIST dataset and scenes from a moving camera dataset.
Using small datasets, our work helps bridge the gap between explainable
machine learning and biologically-inspired learning through analogies and
points to new directions in the investigation of learning processes.

1 Introduction
Different types of Artificial Neural Networks (ANNs) have been used for the task
of feature recognition and image classification. Feedforward machine learning
architectures such as convolutional neural networks (CNNs)[1], deep neural
networks [2], stacked auto encoders[3] etc. and recurrent architectures such as
recurrent neural networks [4], Long Short-Term Memory (LSTM)[5] etc. have
been immensely successful for several tasks from speech recognition [6] to playing
GO [2].
There have also been a number of rapid advances in other machine learning
architectures such as Echo State Networks (ESN) (originally proposed in the
field of machine learning) [7] and Liquid State Machines (LSMs) (originally
proposed in the field of computational neuroscience) [8] , commonly falling under
Reservoir Computing (RCs) [9]. Compared to deep neural networks, ANN-based
RCs are a brain-inspired machine learning framework, and have been show to be
a pertinent framework to model local cortical dynamics and their contribution
to higher cognitive function [10].
The goal of this work is to demonstrate the unreasonable efficiency of Reserving
Computers (RCs) in learning the relationships between images with very little
training data and consequently being able to generalize the learned relationships
to types of images it hasn’t seen before. We concede that other machine learning
techniques such as deep learning [11] and CNNs may also be useful for this task
and have proven to be extremely successful at image classification. However, we
speculate that, because of their complex dynamical character, RCs may inherently
be better suited for learning from a small training set and generalization of this
learning [12].
RCs are dynamical systems which non-linearly transform the input and have
reproducibility to a repeated input signal that can serve as a resource for infor-
mation processing. They appealing because of their dynamical properties and
easy scalability since the recurrent connections in the network aren’t trained.
Applications of RC include many real world phenomena such as weather or stock
market prediction, self driven cars, speech processing and language interpretation,
gait generation and motion control in robots etc, several of which are inher-
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ently non-linear. RCs are also appealing because of their biologically-inspired
underpinnings. Biological systems such as the visual cortex are known to have
primarily ( 70 %) recurrent connections with less than 1 % of the connections
being feedforward [13]. RCs (or closely related models) provide insights into how
biological brains can carry out accurate computations with an ‘inaccurate’ and
noisy physical substrate [14], especially accurate timing of the way in which visual
spatiotemporal information is super-imposed and processed in primary visual
cortex [15]. In addition, biological systems are known to learn visual concepts
through analogies, using only a handful of examples [16]. In particular, in [17],
bees were trained to fly towards the image in an image pair that looked very
similar to a previously displayed base image. On training bees to fly towards the
visually similar image, the bees were presented with two scents, one very similar
and one different from a base scent. As a consequence of the visual training
that induced preference to the very similar category, the bees flew towards the
very similar scent. Recent work has also been done on the phenomenon of ‘peak
shift’, where animals not only respond to entrained stimuli, but respond even
more strongly to similar ones that are farther away from non-rewarding stimuli
[18]. Thus, biological systems have been found to translate learning of concepts
of similarity across sensory inputs, leading us to believe that the brain has a
common and fundamental mechanism that comprehends through analogies or
through concepts of ‘similarity’.
In our framework, we refer to generalization as the ability of a system to learn
the relationships or transformations, both linear and non-linear, between a pair
of images and be able to recognize the same relationship in unseen image-pairs.
Learning through analogies is a recurring biologically phenomenon, which allow
seems to allow for easy generalization of the learned relationships in biological
systems. Compared to machine learning approaches, humans learn much richer
information using very few training examples. Moreover, people learn more than
how to do pattern or object recognition: they learn a concept – that is, a model of
the class that allows their acquired knowledge to be flexibly applied in new ways
[19]. While many machine learning approaches can effectively classify images
with human-like accuracy with sufficient data, these approaches often require
large datasets and hence increasingly powerful GPUs do not scale well. Despite
the fact that research in learning from very few images, one shot learning [20]
etc., has gained momentum recently, integrating it with generalization of learning
is a relatively unexplored area. In our framework, the RC not only requires very
few training examples compared to techniques such as deep learning, but can also
effectively use analogies to learn relationships, leading to easy generalization.
RCs are built on several prior successful approaches that emphasize the use of
a dynamical system, i.e., existence of attractors, for successful, neuro-inspired
learning. In the ground-breaking work of Hopfield in [21], the success of Recurrent
Neural Networks (RNNs) depend on the existence of attractors. In training,
the dynamical system of the RNN is left running until it ends up in one of its
several attractors. Similarly, in [22], a unique conceptor is found for each input
pattern in a driven RNN. However, training of RNNs is difficult due to training
problems like exploding or vanishing gradient. RCs overcome this problem by
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training only the output weights. Models of spontaneously active cortical circuits
typically exhibit chaotic dynamics, as in RCs [23, 24]. RC offers a convenient
solution to some the problems with an RNN, while offering the same advantages.
In this work, we train RCs on both the MNIST handwritten digit database as
proof of concept as well as depth maps of visual scenes from a moving camera,
to study generalization of the learned relationships between pairs of images. The
reservoir activity is then studied to reveal the underlying dynamical features
of the activity that classification can be attributed to. We find that the same
type of relationship cluster in reservoir space, i.e., the reservoir space is made
of several local attractors corresponding to the relationships. This allows for
generalization of the learned relationships to all image pairs, seen and unseen by
the reservoir. Additionally we compare its performance for a generalization task
to a pair-based deep siamese neural network (SNN) and a convolutional siamese
neural network (CSNN) and show that the reservoir performs significantly better,
both for simpler MNIST images as well as for depth maps . We also show that the
reservoir is able to recognize linear combinations of the individuals relationships
it has learned. This work can useful in the field of computer vision to classify
relationships between images, even if they are non-linear as in a moving camera,
in a biological plausible and computationally efficient way.

2 Data and Methods
We use two datasets for this work: 1. The handwritten digit database MNIST:
the MNIST database consists of 70000 images, each 28×28 pixels in size, of
handwritten digits 0-9. 2. Depth maps from a moving camera: consists of depth
maps from 6 different visual scenes recorded indoors in an office setting (refer
supplementary material for complete dataset). Each visual scene has depth maps
from at least 300 images, each compressed to 100×100 pixels in size, recorded
as the camera is moved within a small distance (∼30cm) and rotated within a
small angle (∼30◦). A sample of three RBG images from one of the 6 classes is
shown in Fig. 1.

Figure 1: Examples of images taken from a
moving camera from the same class. A pair of
these would be classified under the category
‘similar’

In our framework, images are
always considered in pairs (im-
age 1 and image 2). We study
five relationships- noise, rotated,
zoomed, blurred, and different.
We are interested in exploring
relationships between images
through concepts of ’similarity’
and ’difference’. Such relation-
ships are a natural extension of
these concepts. Examples of the
image pair relationships applied
to the MNIST dataset is shown in Fig. 2. We create the image pairs as follows:

1. Noise: Two different images from the same class are taken directly from

4



the MNIST database (Ex. Fig 2(a)). One of the images in the pair
(image 1) remains untransformed, whereas the other (transformed) image
is superimposed with random noise with peak value given by 20 % of the
peak value of image 1.

2. Rotated: Two different images from the same class are taken. Image 2s is
90◦ rotated (Ex. Fig 2(b))

3. Zoomed: Image 2 is zoomed with a magnification of 2 (Ex. Fig 2(c)).

4. Blurred: Image 2 is blurred (Ex. Fig 2(d)) by convolving every pixel of
the image by a 6× 6 convolution matrix with all values 1/36:

5. Different: Two different images from different classes (Ex. Fig 2(e)).

All pairs are characterized by the relationship between the image-pairs. For
instance, we call a pair rotated if we start from two different handwritten images
of the same digit and rotate the second image 90circ with respect to the first.
Since two different handwritten images of the same digit are used, the image
pair involves an initial non-linear transformation in addition to the applied
transformation.

Figure 2: Pairs of images that are representative of the transformations classified
into five labels: (a) very similar, (b) rotated by 90circ, (c) zoomed, (d) blurred
and (e) different.

2.1 Network Architecture
In this work we use the Echo State Network (ESN) class of RCs for training
and classification. Our RCs are neural network with two layers: a hidden
layer of recurrently interconnected non-linear nodes, driven both by inputs as
well as by feed-backs from other nodes in the reservoir layer and an output
or readout layer. Only the output weights of the reservoir are trained. The
reservoir, being a dynamical system, works particularly well for analyzing time-
series input data due to its memory and high-dimensional projection of the
input [25, 26]. The input images are hence converted into a ‘time-series’ by
feeding the reservoir a column of the input image at each time point (as in
[27]). The method of ‘temporalization’ of the input (row-wise, column-wise etc.)
simply changes the input representation and doesn’t affect the analysis. While
there is limited understanding of the actual processes through which the brain
processes analogies, we explore two models that represent cortical processing
of relationships between inputs. There has also been some evidence [28] of
integrated processing, particularly in the visual cortex. To mimic an integrated
processing system more closely, we study the Single Reservoir architecture (Fig.
3(a)). However, there is some evidence that analogy processing involves two steps:
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1) the brain generated individual mental representations of the different inputs
and 2) brain mapping based on structural similarity, or relationship, between
them [29]. We create the Dual Reservoir architecture (Fig. 4)in an attempt to
mimic this process of parallel processing of signals, followed by mapping based
on the differences between the processed signal in the cortex. Since, there isn’t a
consensus in the neuroscience community about the details of cortical processing,
we present both the single and dual reservoir architecture here:

2.1.1 Single Reservoir Architecture

Input Layer As discussed above, in order to exploit the dynamical system
properties of RCs, the input is converted to a time series. We vertically concate-
nate the image pair to form the combined image. Then we input the combined
image column by column (shown in Fig. 3(b) for the MNIST database) into
the reservoir, allowing the time axis to run across the rows of the image. While
this ’temporalization’ may seem artificial, there’s a unique reproducible reservoir
state corresponding to each image causing the results to be independent of order
of temporalization, as long as all images are temporalized the same way.

Figure 3: (a) Reservoir architecture with input state of the two images at time t
denoted by #„u (t), reservoir state at a single time by #„r (t) and output state by
#„y (t). (b) shows one image pair from the rotated 90◦ category of the MNIST
dataset split vertically and fed into the reservoir in columns of 1 pixel width,
shown to be larger here for ease of visualization.

Reservoir Layer The reservoir can be thought of as a dynamical system
described by a reservoir state vector #„r (t) which describes the states of the
reservoir nodes as a function of time t. The reservoir state #„r (t) is given by:

#„r (t+ 1) = tanh (W in · #„u (t) +W res · #„r (t) + b) (1)

The input weights matrix W in ∈ RNR×Nu , where NR is number of nodes in
the reservoir and Nu is the dimension of the input vector #„u (t); here Nu is the
number of rows of the concatenated image. The activity of the reservoir at time t
is given by #„r (t), of size NR. The recurrent connection weights W res ∈ RNR×NR
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are set randomly between −1 and 1. b is a scalar bias. We use hyperbolic tangent
as the non-linear activation function. We set the spectral radius γ (maximal
absolute eigenvalue of W res at 0.5, but we observe performance to be insensitive
to this choice 10. The reservoir is a dynamical system that transforms the low
dimensional input into a much higher dimensional reservoir space and reaches its
optimal performance even when the W out and W res are sparse. Matrix sparsity
is 0.9 unless otherwise stated.

Output Layer The composite output reservoir state of one reservoir for one
image X̃ is formed by concatenating the reservoir state (the state of all reservoir
nodes) at every timestep #„r (t) as follows:

X̃ = #„r (0)⊕ #„r (t = 1)⊕ . . .⊕ #„r (t = T ). (2)

X̃ is a matrix of size NR × c where c is the number of columns in the image
(number of time steps (T )through which the entire image is input).
The output/readout layer representation (Yi) for a very similar pair is (1, 0, 0, 0, 0),
rotated pair is (0, 1, 0, 0, 0), zoomed pair is (0, 0, 1, 0, 0), blurred pair is (0, 0, 0, 1, 0)
and different pair is (0, 0, 0, 0, 1). The output weights convert the output reservoir
states X̃k into the reservoir output yi. Ridge regression (refer A) is then used to
train the output weights of the reservoir. While testing, the reservoir computer
allots a fractional probability to each output label, and the image pair is classified
into the label with the highest probability.

2.1.2 Dual Reservoir Architecture

Input Layer In order to exploit the dynamical system properties of RCs,
the input is converted to a time series. However unlike the single reservoir
architecture, we input each image (image 1 and image 2) column by column
into two identical reservoirs, allowing the time axis to run across the rows of the
image.

Reservoir Layer The reservoir states for the two images, #„r1(t) and #„r2(t), are
given by :

#„r1(t+ 1) = tanh (W in · #„u (t) +W res · #„r1(t) + b)
#„r2(t+ 1) = tanh (W in · #„v (t) +W res · #„r2(t) + b)

(3)

The properties of the internal dynamics of the reservoir are the same as the
single reservoir. The two reservoirs used in the Dual architecture are identical.

Output Layer The total reservoir state X of one reservoir for one image is
then formed by concatenating the reservoir state (the state of all reservoir nodes)
at every timestep #„r (t) as follows:

X = #„r (0)⊕ #„r (t = 1)⊕ . . .⊕ #„r (t = T ). (4)
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Figure 4: (a) Dual reservoir ar-
chitecture with input state of the
two images at time t denoted by
#„u (t) and #„v (t), reservoir state by
#    „r1,2(t) and output state by #„y (t).

X is a matrix of size NR × c where c is the
number of columns in the image (number of
time steps (T )through which the entire image
is input).
The kthz output reservoir state is given by
X̃k = ∆Xk = ∆Xk(i,j) = |Xi − Xj |, where
Xi is the reservoir state of the kth image
corresponding to the image 1 and Xj corre-
sponds to the image 2. The readout layer
representations for different transformations
are the same as that in the single reservoir
case. Ridge regression (refer Appendix A) is
then used to train the output weights of the
reservoir.

3 Results

3.1 Generalization to Untrained Image Classes

Figure 5: Fraction of image-pairs cor-
rectly classified versus training set size
(a&c) and reservoir size (b&d). Single
reservoir results show in (a&b). Dual
reservoir results shown in (c&d). Reser-
voir size=1000 nodes for (a&c); training
size=250 pairs for (b&d). Spectral ra-
dius γ = 0.5, sparsity = 0.9.

In this section we discuss the perfor-
mance of the single and dual reservoir
set-up for the task of generalization
of learned relationships. We present
the results obtained on the MNIST
dataset as proof of concept. The sys-
tems were trained on the five relation-
ships − noise added, 90◦ rotation, blur,
zoom, different (i.e. no relationship),
on image-pairs of handwritten digits
0-5. Then they were tested on identi-
fying the relationships between image
pairs of handwritten digits 6-9 (dig-
its they have never seen before). We
use fraction correct (1- error rate) as
a metric of performance.
In Fig. 5(a&c), we see that the
reservoir performance increases rapidly
with training set size and plateaus at
around 200 training pairs. A training set size of ∼250 image pairs gives a
reasonable trade-off between performance and computational efficiency. This is
significantly lower than the training set sizes typically used in deep learning. A
biologically reasonable system is expected to train with relatively few training
examples, as our system does. Fig. 5(b&d) shows that for a constant training
data size (250 pairs) the performances increase as expected with reservoir size up
to around 750 nodes after which it saturates. The overall optimal performance of
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the single reservoir appears to be better than that of the dual reservoir. Further,
we also examine the reservoir performance as a function of the spectral radius
γ in Fig. 10; we see no clear dependence on the spectral radius for the range
investigated. For reference, reservoir activity as well as single node activity and
output weights are shown in the Appendix (B).

3.2 Comparison with Deep Siamese Network
The topic of generalized learning has, to the the best of our knowledge, not
been satisfyingly addressed using a dynamical-systems-based machine learn-
ing approach. To assess the effectiveness of our approach, we compare the
performance of RCs with variants of a Siamese Neural Network (SNN), a suc-
cessful pair-based machine learning technique (architecture shown in Fig. 6).
Specifically, we compare the single and dual reservoir model to three other
architectures: a base SNN perceptron with 4 fully connected layers of 128 neu-
rons each, a deep SNN perceptron with 8 fully connected layers of 128 neurons
each, and a convolutional SNN (convolutional layer with 32 filters, 3X3 kernel
and a rectified linear non-linearity, followed by 4 fully connected layers with
128, 64,32 and 2 neurons each). We compared performance for two binary
classification tasks (Fig. 7(c)): 1. Learning the 90circ rotation operator on
MNIST image pairs 2. Learning to detect depth maps that come from the
same visual scene class for the dataset of depth maps from a moving camera.

Figure 6: Siamese Network Ar-
chitecture. Two inputs X1 and
X2 are fed into two identical net-
works. Gw(X) is the network
transformation of the input X.
W is the shared weights between
the two heads of the siamese ar-
chitecture.

All SNN architectures were trained using
contrastive loss (following [30]) and we use
the optimizer Adadelta with a self adjusting
learning rate. The single and dual reservoirs
have 1000 nodes with γ = 0.5 and sparsity
0.9. Training is done for a 100 (40) epochs
on the base and deep SNN perceptrons, 40
(20) epochs on the convSNN for MNIST (vi-
sual scenes) data respectively and once on
the reservoirs on 500 image pairs. While
we present a select few SNN architectures
here (and selected choices of parameters),
we tried several other SNN architectures in-
cluding VGG16-SNN and deep convSNN and
found their performance to be comparable
to the representative SNN performances we
have shown. We also show SNN perceptron
performance on varying depth (number of
layers) and varying training data size (varied in the lower range compared to tra-
ditional deep network training sizes for comparison with the RCs and to motivate
the question of biological plausibility) while testing on seen (trained) classes and
unseen (test) classes (Fig. 7(a&b) respectively) and find that while the network
performs fairly well on the trained classes, it performs consistently poorly on
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the unseen classes. The loss and accuracy plots for the SNN architectures for
both tasks are in appendix C.

Figure 7: SNN perceptron performance on trained (seen) classes (a) and test
(unseen) classes (b) of MNIST data as a function of training dataset size and
SNN perceptron depth. (b) Classification accuracy (fraction correct) of the single
and dual reservoir, base SNN, deep SNN and convSNN on seen (trained) classes
and unseen (test) classes, on (1) identifying rotation transformation in MNIST
images, and (2) identifying similar visual scenes from a moving camera. Training
size: 500 images.

3.2.1 Generalized Learning of the Rotation Operator on the MNIST
dataset

We trained the reservoir on a simple binary classification task, i.e., classify
image pairs from the MNIST dataset as having the relationship ‘rotated’ or not.
Our training set consists of rotated and not rotated images of digits 0-5. Fig.
7(c))shows the fraction of correct classification of the RCs and the SNNs on
the training classes (seen, digits 0-5) and testing classes (unseen, digits 6-9),
as rotated or not rotated. We observe that, while the performance of all the
networks is comparable on training set digits (digits 0-5), all the SNN architec-
tures seems to classify randomly for untrained digits (6-9). Performance didn’t
improve on increasing the depth of the base SNN (Fig. 7(a&b)). The reservoir
performance remains equally good over trained digits (0-5) and untrained digits
(6-9), indicative of learning of the underlying relationship in the pairs and not
the individual digits themselves. As seen in section 3.4, the generalization ability
of the reservoir may be attributed to the convergence of parts of the dynamical
reservoir state for all rotated image-pairs, a concept analogous to that of an
attractor in dynamical systems. In contrast, the SNN isn’t a dynamical system,
and training occurs explicitly on the images as opposed to the classes of relation-
ships, leading to poorer performance while generalizing. However, we present
performance of an fully connected SNN obtained by varying the SNN depth,
training data size in Fig 7(a&b).
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3.2.2 Generalizing Similarities in Depth Perception from a Moving
Camera

Identifying similarities in scenes, properties of scenes such as depth, style etc.
from a moving camera is an important problem in the field of computer vision
[31, 32]. We are interested in studying how the reservoir could learn and generalize
relationships between images from a moving camera, frames of which may be non-
linearly transformed with respect to each other. To demonstrate the practicality
of our method, we implement it on depth maps from 6 different visual scenes
recorded indoors in an office setting. Each visual scene has depth maps from 300
images, recorded as the camera is moved within a small distance (∼30cm) and
rotated within a small angle (∼30◦). We then train the networks to identify pairs
of depth-maps as very similar (same visual scene) or different (different visual
scenes), learning to capture small spatial and rotational invariance. Training is
done on 500 images each from the first three visual scenes. We study whether
the systems are able to generalize, i.e., identify relationships between depth
maps from the other three visual scenes. Fig. 7(c) shows the reservoir performs
significantly better on untrained scenes than the SNN, which classifies randomly.
Both systems have a comparable and very high performance on the trained
scenes. Thus, the reservoir is able to identify frames with similar depth maps
from scenes it hasn’t seen before. This has potential applications in scene or
object recognition using a moving camera.

3.3 Combining Relationships
In the section we train the reservoir independently on the five relationships as
before. However our test input images have a linear combination of multiple
relationships applied on them simultaneously (e.g., rotated as well as blurred). We
then study the ability of the reservoir to recognize all the separate relationships
applied to the test input pair.
Training is done on the five individual relationships (noise, rotated, blurred,
zoomed and different) for digits 0-5. Testing is done on a combination relation-
ships (90◦ rotation and blurring) as well as only 90◦ rotation for digits 6-9. For
testing image-pairs with n relationships applied simultaneously, we consider the
reservoir to have classified correctly if the n highest probabilities correspond to
the n applied relationships. In Fig. 8 we observe that both the reservoirs perform
very well (in terms of classification percent correct) at identifying combined
relationships in images that they have never seen before. The single reservoir,
on average, performs slightly better than the dual reservoir. While there may
be some inherent biases (ex. in Fig. 8(f), the dual reservoir shows a bias to-
wards the zoomed category), in spite of the biases, the reservoirs are able to not
only generalize the learned relationships, but also identify and separate linear
combinations of these relationships in previously unseen images. We speculate
that this ability to generalize combinations of multiple relationships is a result of
overlap of regions in reservoir space that correspond to the separate relationships.
While we only present a few combinations here, we also ran several tests on
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other subsets/combinations of relationships and the RC consistently performs
very well.

Figure 8: Label probability for images that are rotated (a,d) 2 combination:
rotated and blurred (b,e), 3 combination: noise, blurred and zoomed (c,f), for
single and dual reservoir respectively. The fraction correct, where classification is
considered to be correct if the n predicted maximum probability labels are the n
transformations applied to the test image-pair (shown on top left of each panel),
are 0.97, 0.97, 1.0, 0.93, 0.84, 0.93 for (a,b,c,d,e,f) respectively. γ=0.5, reservoir
size=1000. Training digits: 0-5, testing digits: 6-9. Training size: 250 pairs.

3.4 Dimensionality Reduction of Reservoir Space
A possible explanation for the ability of the reservoir to learn relationships
between pairs of images and generalize to unseen images comes from dynamical
systems analysis. In order to generalize, for a given relationship between the input
image pairs, there must be a corresponding relationship between the reservoir
activity, dependent only on the relationship between the input images and not
on the input images themselves. From a non-linear dynamical perspective, this
relates to the attractor structure of the reservoir dynamics. In this section we
show that reservoir states corresponding to a relationship do indeed cluster in
reservoir space, allowing for generalization.
In Fig. 9, we plot a representation of 500 total output reservoir states for each
relationship (using different input digits) for (a) the single reservoir and (b)
the dual reservoir. We show here the five standard relationships for MNIST
- noise, rotate, blur, zoom, different, as well as one combined relationship -
blur+rotate. A single output reservoir state has a very high dimensionality
(NR × T ). We are interesting in viewing this high dimensional data in a
reduced dimensional space. Hence, we use the following dimensionality reduction
techniques - first, we use Principal Component Analysis (PCA) to extract the
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100 largest principal components (PCs) of each reservoir state. We then use
the t-Distributed Stochastic Neighbor Embedding (t-SNE) technique [33] on the
extracted PCs for further dimensionality reduction. t-SNE, being particularly
well suited for the visualization of high-dimensional datasets, has been used very
successfully in recent years along with PCA.

Figure 9: 500 output reservoir states for each relationship in the reduced dimen-
sional space spanned by the two largest components obtained using t-SNE on
the 100 largest principal components of the reservoir state for (a) single reservoir
and (b) dual reservoir. Input images: digits 0-9 of MNIST dataset. NR: 1000.
t-SNE iterations: 300, perplexity: 40.

We observe from Fig. 9(b), that the relationships separate very well for the dual
reservoir in the space of the largest two t-SNE components. Thus, the reservoir
encodes features of the relationship between the image pair, not only the input
image features themselves. We note that the separation isn’t as prominent for
the case of the single reservoir (Fig. 9(a)) as compared to the double reservoir.
Additionally, we also notice that some relationships correspond to multiple
clusters in this representation. This may allow for robustness because the RC
has multiple ways of representing the same relationship. Lastly, we observe
that the ‘rotate+blur’ relationship clusters partially overlap with (for the dual
reservoir) / are in near vicinity of (for the single reservoir) ‘rotate’ and/or ‘blur’
relationship clusters. This partially explains the success of the single as well
as dual reservoir in being able to identify the individual relationships involved
when the input is a combination of relationships (section 3.3). Proximity of the
combined cluster to one of the individual transformation clusters over the other
could also explain biases induced in the reservoir while identifying combined
relationships.

4 Conclusion
In this paper we have used RCs to solve a class of image classification problems
that involve generalization of learning of relationships between images using
limited training data. While image classification has been studied extensively
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before, here we present a biologically-inspired method that not only generalizes
learning, but also allows us to interpret the results analytically through a
dynamical systems lens. We observe that the output reservoir states obtained
from input image-pairs with the same relationships cluster in reservoir space.
From a dynamical systems perspective, this can be interpreted as the attractor
structure of the reservoir dynamics being associated with image-pair relationships.
By reducing dimensionality from the reservoir space to the space mapped by the
clusters, we are able to get a well-generalizing reservoir using only a small training
dataset, whereas contemporary methods such as deep learning require much
larger datasets. The clustering of dynamical reservoir states allows the reservoir
to generalize the relationships learned to types of images it hasn’t seen during
training. Although we see strong performance with a sparse reservoir and few
training images in our proof-of-concept study, we predict that for more complex
input images, a more powerful (and possibly more sophisticated) reservoir would
be required to match performance.
We find that the RC performs significantly better than a deep/conv SNN for the
task of generalization. From a computation perspective, the RC has the added
advantage of speed since only the output weights are being trained and the
reservoir is sparsely connected. Our system is biologically-inspired in two ways.
First, the learning mimics biological learning through comparisons and analogies.
Second, the internal dynamics of the reservoir are known to resemble neural
cortex activity. We conclude that although state of the art machine learning
techniques such as SNNs (for pairwise input) work exceedingly well for image
classification, they do not work as well for generalization of learning, for which
RCs significantly outperform them, due perhaps to their dynamical properties.
Thus, we see the strength of our work as lying in not only its demonstration of the
utility of RCs for generalization, but also in our ability to explain this in terms of
the clustering of reservoir state dynamics -through PCA and t-SNE. This relates
to new ideas in explainable Artificial Intelligence (AI), a topic that continues to
receive traction. An interesting direction would be to explore different reservoir
architectures that model the human brain better. Another promising direction
would be to study synchronization patterns in the reservoir and their effects on
learning.
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A Ridge Regression and Training
Only the output weight matrix W out is optimized during training such that it
minimizes the mean squared error E(y, Y ) between the output of the reservoir y
and the target signal Y . The reservoir output is:

Y = W out∆X (5)

W out ∈ RNy×NR where Ny is the dimensionality of the readout layer.
∆X or the concatenated reservoir state is the matrix containing all total reservoir
states during training phase, ∆X = X̃0 ⊕ X̃1 ⊕ . . . ⊕ X̃M where M is the
total number of training image-pairs, input one after the other, and Y =
Y0 ⊕ Y1 ⊕ . . .⊕ YM is the matrix containing the corresponding readout layer for
all images. The most common way to computeW out is to use Ridge Regression (or
Thikonov regularization) [34], which adds an additional small cost to least square
error, thus making the system robust to overfitting and noise. Ridge regression
calculates W out by minimizing squared error J(W out) while regularizing the
norm of the weights as follows:

J(W out) = η|W out|2 +
∑
i

((W out)T ∆Xi − Yi)2. (6)

where ∆X is the concatenated reservoir state over input image pairs, Y contains
the corresponding label representations and the summation is over all training
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image pairs. The stationary condition is

∂J

∂W out = ηW out +
∑
i

((W out)T X̃i − Yi)∆X = 0. (7)

(∆X∆XT + ηI)W out = ∆XY. (8)

W out = (∆X∆XT + ηI)−1∆XY. (9)

where η is a regularization constant and I is the identity matrix.

B Reservoir Dynamics and Performance
We present the performance of the single and dual reservoir as a function
of spectral radius γ. γ is varied from 0 to 1 while looking for the optimal
performance region where the reservoir has memory or is in the ‘echo state’ (edge
of charos) [35], however we find no indicative pattern (Fig. 10).
Performance with Spectral Radius: Fig. 10 shows fraction correct as a function
of reservoir dynamics for (a) single and (b) dual reservoir.

Figure 10: Fraction correct as a function of spectral radius for (a) single reservoir
(b) dual reservoir. NR=1000, training size=250 pairs, γ = 0.5, sparsity = 0.9.

Reservoir Dynamics:
For completion, we plot the reservoir activity, i.e., averaged reservoir state
corresponding to our five relationships applied to the MNIST dataset, output
weights, and single node activity. Fig. 1112 show plots of activity in the single
reservoir and dual reservoir architecture respectively. We see that the individual
node (f) itself doesn’t encode any decipherable information. However each output
label (a,b,c,d,e) has a different signature in reservoir space.
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Figure 11: Reservoir activity for the single reservoir architecture. (a), (b), (c),
(d), (e) show the differential reservoir activity of 200 nodes over 28 timesteps for
input relationships noise, rotated, zoomed, blurred and different respectively. (f)
shows the output weight matrix(W out) for 50 reservoir nodes. (g) shows activity
of a random node for all output labels over 28 timesteps. NR: 1000, γ = 0.5,
sparsity= 0.9.

Figure 12: Reservoir activity for the dual reservoir architecture. (a), (b), (c),
(d), (e) show the differential reservoir activity of 200 nodes over 28 timesteps for
input relationships noise, rotated, zoomed, blurred and different respectively. (f)
shows the output weight matrix(W out) for 50 reservoir nodes. (g) shows activity
of a random node for all output labels over 28 timesteps. NR: 1000, γ = 0.5,
sparsity= 0.9.
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Figure 13: Plot of training loss and accuracy for (a&c) base siamese network,
(b&d) deep siamese network, and (c&f) convolutional siamese network.
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C Loss and Accuracy of SNNs
In Fig. 13 we plot the training loss and accuracy for the base SNN (4 layers),
deep SNN (8 layers), and convolutional SNN for the two tasks of identifying
rotation operator in MNIST and identifying similar visual scenes from a moving
camera. Since training data is small, losses converge fairly quickly over epochs.
The optimizer Adadelta, which employs a variable learning rate, was used in
training.
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