
Supplementary Materials for AcTExplore: Active Tactile Exploration on
Unknown Objects

Abstract— This document provides additional discussions, fig-
ures and experiments of main paper.

I. IMPLEMENTATION DETAILS

A. Action Space

Suppose the sensor can freely move in 3D space, then it has
a full 6-DOF continuous action space. However, in order to
speed up the training process we discretize the 6-DOF actions
into small translations (x, y, z) and rotations (γ, θ, ψ) steps.
The agent can pick one of 6-DOF to decrease or increase
which either translates or rotates the sensor. Therefore the
12 action space is A = {±x,±y,±z,±γ,±θ,±ψ}. The
translation step (Ts) is 4mm, while the rotation step (Rs)
is 15 degrees about each axis. Furthermore, we introduce
Touch Recovery action (aTR) by saving last touch pose PTR.
Note that the quantity of steps required to explore objects is
contingent upon the translation and orientation step size of
our action space. To provide further clarity, let’s consider an
example. Consider an object with a surface area of 220cm2.
Simplifying this object to a square cube with 90% of the
area, each edge’s length would be approximately 5.7cm.
Given a translation size of 4mm, it necessitates about 206
actions for optimal exploration of each facet. A rotation of
15 degrees necessitates 6 actions to transition between facets.
Therefore, exploring a cube of theoretically entails 1260
actions, considering our action step size. Now, if we apply
this concept to the YCB’s banana, which has a comparable
surface area(216cm2) but is more intricate than a cube
and necessitates additional rotations, the TTS-AMB requires
1631 actions, contrasting with the 1260 actions needed for
the cube which seems reasonable when the object is curved
and cylindrical and takes more rotation actions.
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Fig. 1: Ablation study of training primitives: We trained
AMB-TTS with cube-only and sphere-only setting as well.

B. Reward

1) Hyperparameters Tuning: Our reward function encom-
passes several hyperparameters, the effects of which and
tuning methodologies are expounded in this section. Please
note that rA and be are normalized in range of [0, 1], thus
for tuning α and β which are designed to regularize rA, and
be respectively, we have tried various values, maintaining
constraint α + β = 1, to ensure r(st, at) ∈ [0, 1]. Our
observations revealed large values of α led to learning
policies that moves the agent in a loop which is bigger
than short-term memory size |D| = m as it would receive
Prev in smaller loops where the required actions are less
than m. Conversely, when β is too large the agent learn
policies where the agent failed to align its sensing area with
objects. In consideration of these factors and the distributions
of rA and be, we determined α = 0.15 and be = 0.85 to
effectively address the outlined issues. Regarding the tuning
of Prev , it is pertinent to note that its magnitude should be
substantial enough to prohibit bad scenarios like loop and
non-exploratory trajectories. Prev has a direct interplay with
m as it applies solely when the new pose Pt+1 ∈ D so
with with an empirically established m = 20, Prev = −0.03
results in the favorable behavior. PTR’s role is to discourage
the model from selecting the touch recovery action which
has a positive reward as it’ll touch the object’s surface
where (rA > 0). Furthermore, it’s actually regulating the
number of exploratory actions without touch as the agent is
sacrificing the positive rewards of touching poses near the
current pose for opting to explore surfaces that may not be
directly connected or proximate to the previous pose. Finally,
by choosing PTR = −0.2, all the mentioned issues will be
mitigated. To tune PTR, we recommend first tuning the other
hyperparameters with 12 actions(without touch recovery ac-
tion) and subsequently determining the appropriate value for
PTR based on the complexity of the environment. The TTA
representation also requires some regularizer parameters αi

which are generated from

αi =
1 + i

λ∑m
k=0 1 +

k
λ

(1)

that satisfies
∑m

i=0 αi = 1 and will generate the biggest
weight for the most recent observation which corresponds
to αm. In our experiments, λ = 50 results in the expected
behavior from TTA.
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Fig. 2: Variety of textures in simulation. (C) One of the
primitive objects and tactile depth readings when sensor
is touching a flat surface vs an edge. (A, B, D) multiple
random poses on some YCB objects and their tactile depth
readings, a noticeable distribution shift becomes apparent
when comparing plain primitive objects with the real textures
on YCB objects. However, Tab.I indicates that AcTExplore
has been generalized enough to adapt to unseen objects.
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Fig. 3: Distribution graph: Since our proposed algorithm is
not a deterministic method, we performed 5 trials with each
object. Overall, AMB reward function shows small variation
and outperform others.

C. Further Results

1) Exploration Bonus: As we have discussed in Sec. III-
D, explicitly defining N(P, a) as the count of times the
agent took action a precisely at pose P throughout the
trajectory history is not feasible. This is attributed to the
high-dimensionality of the workspace and the likelihood that
the agent might not re-encounter pose P . As an alternative
approach, we introduced N̂(P, a), denoting the count of
times the agent executed action a in proximity to pose P .
Let’s define the sensor’s pose as

Pt = [Tt|Rt] (2)

where Tt = (xt, yt, zt) and Rt = (γt, θt, ψt) is translation
and orientation of the sensor at step t respectively. Then
Pt′ is a close pose to Pt when it satisfies the following
conditions:

1) ∥(xt − xt′ , yt − yt′ , zt − zt′)∥ ≤ transthresh
2) arccos(min(1, ⟨Rt, Rt′⟩)) ≤ rotthresh
3) at = at′

Then we can define

N̂(P, a) =
T∑

t=0

Iclose(P,Pt).I(a = at) (3)

transthresh and rotthresh needs to be tuned based on
sensor’s sensing area and translation (Ts) and rotation (Rs)
of action space (Sec. I-A). In our experiments, we used
transthresh = 2 ∗ Ts and rotthresh = 4 ∗Rs.

D. Metrics

a) 3D Surface IoU: We introduce 3D surface IoU metric
to evaluate our method. We define a set of ground truth
point clouds uniformly sampled from target object as Ogt =
{pgti }105i=1 and Os

t =
⋃t

i=1Oi = {psi}tMi=1 is the union of
observed point cloud data set from initial time to time t,
where pgti , p

s
i ∈ R3 are a single point cloud data and M is

the number of point clouds computed from observation Ot

depth image. Then the ground truth point cloud covered set
by sensor at time t is defined as

Oc
t := {pgti : ||pgti − psi ||2 ≤ δ, pgti ∈ Ogt and psi ∈ Os

t }
(4)

Finally, the surface IoU at time t is IoUt :=
|Oc

t |
|Ogt| . Here, we

used δ = 5 mm.
b) Chamfer-L1 Distance: Another metric we used to eval-
uate our model is Chamfer-L1 distance [2]. We define the
Chamfer-L1 distance Ct between the two 3D point cloud set
Ogt and Os

t at time t is defined as follows:

Ct :=
1

2|Ogt|
∑

pgt∈Ogt

min
ps∈Os

t

||ps − pgt||

+
1

2|Os
t |

∑
ps∈Os

t

min
pgt∈Ogt

||ps − pgt|| (5)

II. EXPERIMENTS

A. Ablation Study

We ablated the training performance of various primitives
shapes on AMB-TTA model, as depicted in Fig. 1. The
Cube-only model exhibited unstable IoU. Conversely, both
the Cube-only and Cube + Sphere models showed early
stabilization in terms of IoU. Moreover, the Cube + Sphere
training model demonstrated a shorter average length, while
maintaining a 90 % IoU, implying a more effective explo-
ration of the objects within fewer steps during training which
means having Cube+Sphere results in better generalization
even for exploring the training objects.
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Fig. 4: IoU-Step graph includes AMB-TTA (in black) and AMB-TTS (in green) models, both reaching either
90 % IoU or 5,000 steps. The horizontal axis represents the number of steps, and the vertical corresponds to
the IoU. Small objects like strawberry, achieve 90 % IoU comparably faster than large objects like can.

B. Simulation Environment

We evaluated the AcTExplore on various YCB objects after
training on primitive objects. Fig. 2 illustrates the diversity
of shapes and textures of training and testing environments.
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Fig. 5: Further qualitative results on unseen YCB objects with different state and reward settings. From active tactile
exploration, we obtain point cloud data of tactile depth readings on the object’s surface. To generate mesh, we apply Poisson
surface reconstruction algorithm [1].
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