
Cook2LTL: Translating Cooking Recipes to LTL Formulae
using Large Language Models

Angelos Mavrogiannis1, Christoforos Mavrogiannis2, and Yiannis Aloimonos1

Abstract— Cooking recipes are challenging to translate
to robot plans as they feature rich linguistic complexity,
temporally-extended interconnected tasks, and an almost infi-
nite space of possible actions. Our key insight is that combining
a source of cooking domain knowledge with a formalism
that captures the temporal richness of cooking recipes could
enable the extraction of unambiguous, robot-executable plans.
In this work, we use Linear Temporal Logic (LTL) as a formal
language expressive enough to model the temporal nature
of cooking recipes. Leveraging a pretrained Large Language
Model (LLM), we present Cook2LTL, a system that translates
instruction steps from an arbitrary cooking recipe found on
the internet to a set of LTL formulae, grounding high-level
cooking actions to a set of primitive actions that are executable
by a manipulator in a kitchen environment. Cook2LTL makes
use of a caching scheme that dynamically builds a queryable
action library at runtime. We instantiate Cook2LTL in a
realistic simulation environment (AI2-THOR), and evaluate its
performance across a series of cooking recipes. We demonstrate
that our system significantly decreases LLM API calls (−51%),
latency (−59%), and cost (−42%) compared to a baseline that
queries the LLM for every newly encountered action at runtime.

I. INTRODUCTION

To be useful in household environments, robots may need
to understand and execute instructions from novice users.
Natural language is possibly the easiest way for users to
provide instructions to robots but it is often too vague.
This motivates the need for mapping natural language to
actionable, robot-executable commands. This is a challenging
problem, especially for complex activities that include tem-
porally correlated subtasks, such as following instructions in
a manual, or performing a delicate assembly task.

In this paper, we focus on translating cooking recipes into
executable robot plans. Cooking is one of the most common
household activities and poses a unique set of challenges
to robots [6]. It usually requires following a recipe, written
assuming that the reader has some background experience
in cooking and commonsense reasoning to understand and
complete the instruction steps. Recipes often feature am-
biguous language [27], such as omitting arguments that are
easily inferred from context (the known “Zero Anaphora”
problem [20]; see Fig. 3b where the direct object of the verb
“cook” is missing), or, more crucially, underspecified tasks
under the assumption that the reader possesses the necessary
knowledge to fill in the missing steps. For example, recipes

1Department of Computer Science, University of Maryland, Col-
lege Park, 8125 Paint Branch Dr, College Park, MD 20742, USA.
angelosm@cs.umd.edu, jyaloimo@cs.umd.edu

2Department of Robotics, University of Michigan, Ann Arbor, MI, 48105.
cmavro@umich.edu.

We release our code and a video with an example simulation rollout.

Fig. 1: Cook2LTL in AI2-THOR [21]: The robot is given
the instruction Refrigerate the apple. Cook2LTL produces an
initial LTL formula ϕ (top left); then it queries an LLM to
retrieve the low-level admissible primitives for executing the
action; finally it generates a formula consisting of 4 atomic
propositions (ψ1, ψ2, ψ3, ψ4) that provide the required task
specification and yield these consecutive scenes.

with eggs do not explicitly state the prerequisite steps of
cracking them and extracting their contents. Additionally,
although inherently sequential, recipes often include addi-
tional explicit sequencing language (e.g. until, before, once)
that clearly defines the temporal action boundaries.

Motivated by these observations, our key insight is that
combining a source of cooking domain knowledge with a
formalism that captures the temporal richness of cooking
recipes could enable the extraction of unambiguous, robot-
executable plans. Our main contribution is Cook2LTL, a
system that receives a cooking recipe in natural language
form, reduces high-level cooking actions to robot-executable
primitive actions through the use of LLMs, and produces
unambiguous task specifications written in the form of LTL
formulae (See Fig. 1). These plans are then suitable for
use in downstream robotic tasks. We build and evaluate our
method based on a subset of recipes from the Recipe1M+
corpus [28]. We run Cook2LTL on these recipes and show
that by caching the action reduction policy, we incrementally
build a queryable action library and limit proprietary LLM
API calls with significant benefits in cost (−42%) and com-
putation time (−59%) compared to a baseline that queries the
LLM for every unseen action at runtime. We demonstrate the
transferability of Cook2LTL to a robotic platform through
experiments in a simulated kitchen in AI2-THOR [21].

ar
X

iv
:2

31
0.

00
16

3v
2

 [
cs

.R
O

]
 7

 M
ar

 2
02

4

https://github.com/angmavrogiannis/Cook2LTL
https://youtu.be/5Q5cdcPN_2E

Fig. 2: Cook2LTL System: The input instruction ri is first preprocessed and then passed to the semantic parser, which
extracts meaningful chunks corresponding to the categories C and constructs a function representation a for each detected
action. If a is part of the action library A, then the LTL translator infers the final LTL formula ϕ. Otherwise, the action is
reduced to a sequence of lower-level admissible actions {a1, a2, . . . ak} from A, and the reduction policy is cached to A
for future use. The LTL translator then yields the final LTL formulae based on the derived actions.

II. RELATED WORK

Robotic Cooking: Cooking has been an important means
of studying action understanding [1, 3, 35, 48]. The EU
project POETICON [1] viewed cognitive systems as a set
of languages {natural, visual, motoric} and integrated these
languages towards understanding cooking actions. Along
these lines, Yang et al. [48] processed YouTube videos using
Convolutional Neural Networks (CNNs) and a grammatical
approach [35] to produce parse trees that could be used for
generating cooking actions. A few works have built end-
to-end cooking systems that implement textual recipes on
real robots [3, 6], but are restricted to completing a roughly
specific task (e.g., baking [6], and making pancakes [3]) and
hence can only deal with a limited subset of recipes. On the
other hand, more versatile commercial solutions (e.g., the
Moley kitchen [32]) are expensive and to the best of our
knowledge cannot handle unseen recipes in real time.

Although our approach has not been applied on a real-
world hardware platform, our AI2-THOR simulation [21] in
Sec. V-B demonstrates its transferability to a real robot while
allowing the system to adapt to new recipes.

LLM planning: Several works have grounded high-level
actions to a well-defined set of actions for task planning
using textual LLM- [17–19, 23, 26, 40, 44] or multimodal
LLM-based [12, 47, 49] approaches. Our interest lies in the
former category given the unimodal nature of our text-to-
robot action approach. These textual LLM-based works have
shown great performance but come with certain limitations.
For instance, the framework of Ichter et al. [19] cannot
handle open-vocabulary or combinatorial tasks, the one
by Huang et al. [18] might produce action plans including
items that are not present in the current environment, and
the model of Huang et al. [17] does not guarantee that the
returned actions are admissible in the current context. Some
of these works [26, 40, 44, 46] have leveraged programming
language structures as an expressive tool for efficiently repre-
senting a rich set of task procedures in the LLM prompts. In
the context of cooking, Wang et al. [46] have used LLMs to

break down high-level cooking actions into actionable plans.
However, their approach requires access to demonstrations
of the intermediate steps of the cooking task at hand.

In our work, we adapt the methodology proposed by Singh
et al. [40], where the task planning problem is formulated as
a pythonic few-shot prompting scheme. The prompt consists
of a pythonic import of a set of primitive actions, a definition
of a list of available objects, and a few example task plans
in the form of pythonic functions. Their experiments showed
that prompting an LLM for task planning in a programmatic
fashion outperforms verbose descriptive prompts by restrict-
ing the output plan to the constrained set of primitive actions
and objects available in the current environment.

Natural Language to LTL: LTL was initially used in
formal verification for computer programs [38]. Since then,
it has been extensively used in robotics [13, 22, 41] as a
formalism that enables the extraction of guarantees on robot
performance given a robot model, a high-level description
of its actions, and a class of admissible environments.
There has been considerable work on translating natural
language instructions to task specifications in the form of
LTL [5, 14, 25, 33, 37, 45] and its variants [9, 31]. Most
approaches try to address the main bottleneck which is
the high cost of obtaining annotations of natural language
with their equivalent LTL logical forms. Gopalan et al.
[14] orchestrate a data collection and augmentation pipeline
to build a synthetic domain and translate natural language
to LTL formulae using Seq2Seq models [2]. Alternatively,
Patel et al. [37], Wang et al. [45] learn from trajectories
paired with natural language to reduce the need for human
annotation, however a lot of trajectories are required to
implicitly supervise the translator. Berg et al. [5], Liu et al.
[25] ground referring expressions to a known set of atomic
propositions and translate to LTL formulae using Seq2Seq
models [15] and LLMs [7], respectively. Similarly, Chen
et al. [10], Pan et al. [33] use the paraphrasing abilities of
LLMs to generate synthetic datasets tackling the scarcity of
labeled LTL data.

Our approach is more similar to the work of Chen et al.

[10] and Hsiung et al. [16], abstracting natural language to
an intermediate representation layer before grounding to the
final atomic propositions. An important limitation of these
methods is that they are based on thoroughly curated datasets
or well-structured synthetic data generation pipelines. On
the contrary, we deal with unstructured free-form recipe text
scraped from the internet. Moreover, most of these works in
embodied settings have mainly been applied to navigation
and simple pick-and-place tasks or combinations of these.
Our web-scraped cooking recipe corpus offers a richer and
more diverse action space.

III. PRELIMINARIES

This section provides a short background on LTL and
LLMs, which are the tools we are using in our pipeline.

A. Linear Temporal Logic

LTL is a temporal logic that was developed for formal ver-
ification of computer programs through model checking [38].
It is suitable for expressing task specifications and verifying
system performance in safety-critical applications. These task
specifications are expressed through the use of this grammar:

ϕ ::= p | ¬p |ϕ1 ∧ ϕ2 |ϕ1 ∨ ϕ2 | G ϕ | F ϕ |ϕ1 U ϕ2 (1)

where ϕ is a task specification, ϕ1 and ϕ2 are LTL formulae,
and p ∈ is an atomic proposition drawn from a set P of
atomic propositions (APs). ¬,∧,∨ are the known symbols
from standard propositional logic denoting negation, con-
junction, and disjunction, respectively. As an extension, LTL
supports additional temporal operators. More specifically,
G ϕ denotes that ϕ holds globally, F ϕ denotes that ϕ must
eventually hold, and ϕ1 U ϕ2 indicates that ϕ1 must hold for
all time steps until ϕ2 becomes true for the first time. In
this work, we utilize LTL as a formal language to express
temporally-extended cooking tasks.

B. Large Language Models

Given a piece of text W = {w1, w2, . . . , wn} consisting
of n words wi, i = 1, . . . , n, a language model estimates the
probability p(W). This is done in an auto-regressive manner,
leveraging the chain rule to factorize the probability [4]:

p(W) = p(w1, w2, . . . , wn) =

n∏
i=1

p(wi|w1, . . . , wi−1) (2)

Generating text can then be achieved recursively. Given
a set of preceding words {w1, w2, . . . , wi−1}, the model
estimates the probability distribution for the next word
p(wi|w1, . . . , wi−1). LLMs, such as BERT [11] and GPT-
3 [7] are pre-trained on large-scale internet corpora and have
dominated across a series of downstream natural language
processing (NLP) tasks [42]. In this work, we leverage
the domain knowledge encoded into such models in order
to reduce high-level tasks to actions on a lower level of
abstraction.

IV. TRANSLATING COOKING RECIPES TO LTL
FORMULAE

A. Problem Statement

Consider a robot in a kitchen, equipped with a limited set
of primitive actions A. We assume that a primitive action in a
cooking environment can be described by a set of salient cat-
egories C ={Verb, What?, Where?, How?, Time,
Temperature}. We define an action description a as a
function consisting of a main Verb as the function name,
with a set of one or more of the other categories as its
parameters:

a = Verb(What?, Where?, How?, Time, Temperature)

The robot is tasked with executing a cooking recipe R that
consists of a list of k instruction steps {r1, r2, . . . , rk}, where
each instruction step ri is an imperative sentence in natural
language describing a robot command. Each instruction step
ri may include one or more cooking actions. Our goal is to
generate a set of task specifications written in the form of a
set of LTL formulae Φ = {ϕ1, ϕ2, . . . , ϕn} that implement
the recipe under the constraint of only including actions that
belong to the set of primitive actions A that the robot is
capable of executing.

B. System Architecture

To solve this problem, we propose Cook2LTL, the system
architecture summarized in Fig. 2. Given an instruction ri
and a set of actions A, Cook2LTL:

1) Semantically parses ri into a function representation a

for every detected high-level action.
2) Reduces each high-level action a /∈ A to a combination

of primitive actions from A.
3) Caches the action reduction policy for future use,

thereby gradually building an action library that con-
sists of parametric functions that express high-level
cooking actions in the form of primitive actions.

4) Translates ri into an LTL formula ϕi with function
representations as atomic propositions.

Algorithmically, these steps are summarized in Alg. 1. In
the following subsections, we expand on the components of
Cook2LTL in more detail.

C. Semantic Parsing and Data Annotation

Our translation system requires a semantic parsing mod-
ule capable of extracting meaningful chunks corresponding
to the parametric function representation components of a
cooking action. To this end, we fine-tune a named entity
recognizer with the addition of salient categories C as labels.
We choose a neural approach over a syntactic parse because
the latter would require arduous manual rule crafting for
every different mapping of part-of-speech (POS) tags to
these categories. Additionally, explicit POS-tagging-based
approaches often struggle with handling the intricacies of
cooking discourse, such as imperative form sentences omit-
ting context-implicit parts of speech.

Algorithm 1 Cook2LTL
Input: A high-level instruction step r, a set of primitive
actions A, and an action library A
Output: An LTL action formula ϕ

1: A← A ∪ A
2: r ← fPRE(r) ▷ Preprocessing
3: {a1, a2, . . . , an} ← fSP (r) ▷ Semantic Parsing
4: A← {a1, a2, . . . , an}
5: ϕ← fLTL(a1, a2, . . . , an) ▷ Initial LTL Translation
6: for ai ∈ A do
7: if ai /∈ A then
8: {a1, a2, . . . , ak} ← fAR(ai) ▷ Action Reduction
9: ai ← {a1, a2, . . . , ak}

10: A← A ∪ {a→ a1, a2, . . . , ak} ▷ Caching
11: end if
12: end for
13: ϕ← fLTL(A) ▷ Final LTL Translation
14: return ϕ

(a) Salient categories C considered for semantic parsing.

(b) Recipe steps annotated with the salient categories C

Fig. 3: We annotate Recipe1M+ [28] instruction steps with
the salient categories C ={Verb, What?, Where?,
How?, Temperature, Time} and fine-tune a named
entity recognizer to segment chunks corresponding to C.

In the absence of a labeled dataset with a schema matching
C, we create our own data building upon the large cooking
recipe dataset Recipe1M+ [28]. Specifically, we consider a
subset of 100 recipes from Recipe1M+, leading to 1000
recipe instruction steps. We use brat [43] to manually an-
notate chunks in each step corresponding to the follow-
ing salient categories: C ={Verb, What?, Where?,
How?, Temperature, Time}, which is a similar an-
notation scheme as the one seen in recent work [34].

Fig. 3 shows these categories and a set of example recipe
steps taken from Recipe1M+ [28]. Verb is the main action
verb in a recipe step. What? represents the direct object
of the Verb and is often an ingredient, but can correspond

to other entities such as a kitchen utensil or an appliance.
Where? is usually a prepositional phrase, it implies a
physical location (e.g. table, bowl) but can often be an
ingredient to which the Verb applies. How? is usually either
a gerund form of a verb, expressing concurrency and hence
giving rise to a secondary cooking action, or complements
the main cooking action (e.g. “Drizzle with olive oil”). The
Time category consists of temporal expressions composed
of keywords that are important for the translation of the
commands to LTL formulae (until, before etc.). Finally,
Temperature can explicitly list the degrees (e.g. 350F)
to which food should be cooked or refer to a temperature-
related state of some ingredient (e.g. medium heat). These
salient categories form the function representation of an
action found in ri.

D. Reduction to Primitive Actions

Some of the function representations captured in the previ-
ous step contain high-level actions that might not be directly
executable by the robot, which can only execute actions that
belong to the primitive set A. Therefore, our system requires
a module capable of mapping an action a /∈ A to an action
a ∈ A, if possible, or reducing a to a sequence of actions
a1, a2, . . . , ak where ai ∈ A, i = 1, 2, . . . , k. Our system
initially checks whether a ∈ A to validate a formula for
execution, and if a ∈ A, a is forwarded to the LTL translator.

LLM Action Reduction: If a /∈ A we employ an LLM-
based methodology inspired by the work in [40] to extract
a lower-level plan exclusively consisting of primitive actions
from A. Specifically, we design an input prompt consisting
of: i) a pythonic import of the available actions in the envi-
ronment, ii) two example function definitions decomposing
high-level cooking actions into primitive sets of actions from
A, iii) the function representation a extracted by the semantic
parsing module in the form of a pythonic function name
with its parameters. As shown in [40] and Fig. 4, the LLM
follows the style and pattern of the input function and only
includes available actions in the output. The key advantage
of this method is the flexibility in changing the admissible
primitive actions depending on the robot capabilities and
the environment. This change can simply be achieved by
modifying the primitive actions in the pythonic import.

Action Library: Extending ProgPrompt [40], every time
we query the LLM for action reduction, we cache a and
its action decomposition for future use through a dictionary
lookup manner. This gradually builds a dynamic knowledge
base in the form of an executable action library A consisting
of various high-level actions along with their function bodies
made out of primitive actions from A. At runtime, instead of
only checking whether a detected action a matches an action
a ∈ A, we additionally check if a ∈ A. In case there is a
match, we replace a with the action in A. Additionally, we
add a to the pythonic import part of the prompt, allowing
the model to invoke it when generating future policies (e.g.
the action boil in Fig. 4). The key benefit comes from
avoiding to continuously query an LLM for action reduction,
thus replacing potential latency resulting from an LLM API

Fig. 4: Inspired by ProgPrompt [40], Cook2LTL uses an LLM prompting scheme to reduce a high-level cooking action (e.g.
boil eggs) to a series of primitive manipulation actions. The prompt consists of an import statement of the primitive action
set and example function definitions of similar cooking tasks. The key benefit of using this paradigm is that it constrains the
output action plan of the LLM to only include subsets of the available primitive actions. We extend this prompting scheme
by reusing derived LLM policies. In this case, the action boil is added to future import statements in the input prompt,
enabling the model to invoke the derived boil function which is now considered given to the system.

call with a fixed O(1) dictionary lookup time. It also reduces
the cost associated with querying a proprietary LLM API.

E. LTL Translation
The final step in our pipeline translates the intermediate

function representations acquired from semantic parsing and
action reduction into an LTL formula. The implicit sequenc-
ing of recipes is elegantly captured by the sequenced visit
specification pattern [30]:

F (l1 ∧ F(l2 ∧ . . .F ln))) (3)

This pattern has been used [25, 36, 37] to model a visit of
a set of locations L = {l1, l2, . . . , ln} in sequence one after
the other in a navigational setting, adapted to the execution
of consecutive cooking actions a1, a2, . . . , an in our case.
Building on this pattern, we acquire conjunction, disjunction,
and negation constituents for each segmented chunk corre-
sponding to the categories C through a dependency parse.
Then, we write down a formula ϕ which includes high-level
actions a with a combination of the following LTL operators
{(F : Finally), (∧ : and), (∨ : or), (¬ : not)}. Every
action ai is translated to one or more primitive actions from
A. In the latter case, the generated low-level plan for ai is
parsed into a subformula ψi based on Equation 3. The Time
parameter passed to the action reduction LLM often includes
explicit sequencing language (such as until, before, or once).
The LLM has been prompted to return a Wait function in
these cases (see example in Fig. 4), which is then parsed
into the (U : until) operator and substituted in ψ. The final
formula ϕ consists of subformulae ψ1, ψ2, . . . , ψn comprised
by primitive actions in A:

ϕ = F (a1∧F(a2∧ . . .Fan))) = F (ψ1∧F(ψ2∧ . . .Fψn)))
(4)

where:{
ψi = ai , ai ∈ A ,or
ψi = f(a1, a2, . . . , ak,O) ,O = {F ,∧,∨,¬,U}

(5)

V. EVALUATION

A. Ablation Study

To investigate the performance of Cook2LTL, we conduct
an ablation study against two variants. For each run, the
input is a recipe from a held-out subset of Recipe1M+ and
the output is a series of task specifications in the form of
LTL formulae Φ towards executing the recipe under the
constraints of admissible actions A. In all the experiments we
use the OpenAI API and the gpt-3.5-turbo model. The initial
preprocessing step consists of filling in the implicit objects
(zero anaphora resolution) in the recipes and segmenting
each recipe into sentences. We begin by deploying a partial
version of our system (AR*) as a baseline, consisting of
the preprocessing, semantic parsing, and action reduction
modules. We expect that our action reduction policy adheres
to the admissible actions of the environment by a significant
amount. We incrementally add the functionality of invoking
cached policies, first when encountering a primitive action
(AR), and then when an action is found in the action library
(AR+A), starting from an empty library and gradually build-
ing it with the LLM-generated policies along the way. We
anticipate a significant benefit in terms of computational load
and cost efficiency resulting from capitalizing on reusable
policies, compared to querying the action reduction LLM for
every unseen action encountered at runtime. We formalized
these insights into the following hypotheses:

H1: Our action reduction policy generation constrains the
LLM output to the admissible actions A in our environment.

Fig. 5: Tasks we tested Cook2LTL in AI2-THOR (left to
right): microwave the potato; chop the tomato;
cut the bread; refrigerate the apple.

Active Modules
Metric AR* AR Cook2LTL (AR+A)
Executability (%) 0.91± 0.01 0.92± 0.01 0.94± 0.01
Time (min) 14.85± 1.05 9.89± 0.46 6.05± 0.12
Cost ($) 0.19± 0.01 0.16± 0.00 0.11± 0.00
API calls (#) 275± 0.00 231± 0.00 134± 0.00

TABLE I: Performance of Cook2LTL against baselines
across 50 Recipe1M+ [28] recipes (10 runs per recipe).

H2: Our enhanced Cook2LTL system that includes the
action library component is more time- and cost-efficient
than the baseline action reduction-comprised partial system.

To evaluate these hypotheses, our metrics are: 1. Ex-
ecutability (%), which is the fraction of actions in the
generated plan that are admissible in the environment; 2.
Time (min or sec) which measures the runtime influenced by
the LLM API calls; 3. Cost ($) which is the overall cost for
a batch of experiments and depends on the number of input
and output tokens; 4. the number of the LLM API calls.

B. Results & Discussion

Based on the quantitative results in Table I we make the
following observations regarding our hypotheses.

H1: Our first hypothesis is confirmed. In every part of
the ablation study the system has a high executability with a
maximum value of 94% when using the action library. This
is a natural consequence of incorporating a new action in
the prompt every time it is decomposed to sub-actions by
the LLM. The policies for the cached actions are now part
of the system, and hence they are considered admissible in
the environment, leading to an increased executability value.

H2: The enhanced action library-based Cook2LTL sys-
tem (AR+A) outperforms the baseline (AR*) and primitive
action-focused variant (AR) in all 4 metrics. We have dis-
covered that learning new action policies through prompting
an LLM and reusing them in a dictionary lookup manner
in subsequent recipes decreases the number of API calls by
51% and 50% compared to the AR* and AR versions of the
system. Consequently, a lower number of API calls leads to

AR Cook2LTL (AR+A)
Task SR (%) Time (sec) SR (%) Time (sec)
Microwave the potato 5.4± 1.95 27.29± 3.66 8± 4.47 3.26± 1.30
Chop the tomato 2.4± 1.52 16± 0.96 4± 5.47 1.61± 0.76
Cut the bread 9± 0.71 12.85± 0.84 8± 4.47 1.12± 0.16
Refrigerate the apple 7.6± 0.55 14.6± 0.38 8± 4.47 1.56± 0.44

TABLE II: We demonstrate the performance of Cook2LTL
on 4 simple cooking tasks in AI2-THOR. We observe that
Cook2LTL (AR+A) is time efficient but propagates initial
incorrect LLM-generated sets of actions to subsequent runs.

a significantly reduced runtime and cost. More specifically,
the integration of the action library into our system decreases
runtime by 59% and 42% compared to the AR* and AR
versions, and cost by 42% and 31%, respectively.

C. Demonstration in AI2-THOR

We demonstrate the performance of Cook2LTL in a sim-
ulated AI2-THOR [21] kitchen environment (See Fig. 1).
AI2-THOR has a small set of ingredients and objects and
hence cannot support the full execution of recipes found on
the web; however the limited action space aligns with the
notion of primitive actions and offers room for highlighting
the key ideas of our system. To showcase the potential of
our approach, we constructed a set of 4 kitchen tasks that
are admissible in AI2-THOR and executed them by invoking
Cook2LTL. We assume that the kitchen is mise en place so
the locations of the objects are known to the agent. In AI2-
THOR, we design a minimal parser that receives an LTL
formula and converts it to a series of actions. We adapt
the imported primitive actions and example functions in the
prompt to the ones that are supported in the simulation. Fig. 5
contains screenshots from our experiments. We run 5 sets
of experiments where we execute each task 10 consecutive
times. We measure the success rate SR and execution time
due to the LLM API calls and compare the performance of
the AR and Cook2LTL (AR+A) variants. The success rate is
the fraction of executions that achieved the task-dependent
goal conditions (e.g. tomato=sliced) that we defined a priori.
During our simulations we observe that Cook2LTL is still
significantly more time efficient compared to baselines, how-
ever its SR is entirely dependent on the first LLM-generated
plan, and fails when this plan is not executable (See Table II).

VI. LIMITATIONS & FUTURE WORK

System: We annotated a small part of the Recipe1M+
dataset [28] with our salient categories but we would need
more data to improve the entity recognizer for reliably
transferring the system to a real-world robot. Finally, some
actions being substituted by action library policies lead to
non-executable plans. Our system would benefit from an
additional mechanism that robustly ensures the correctness
of the LLM-generated plans based on environment feedback.

Sim2real: AI2-THOR is not tailored towards simulating
cooking tasks but rather supports the general area of task
planning. Thus, we would need a cooking-specific simulator
to support a more diverse set of recipes that correspond to
the rich web-scraped recipes that we built our system on. In
terms of transferring simulation to a real robot, we plan to
use the Yale-CMU-Berkeley (YCB) Object and Model set [8]
towards supporting a basic set of simple cooking tasks for
benchmarking preliminary experiments.

Task representation: The final layer of our system uses
LTL as an expressible notation tool capturing temporal task
interdependence, but our system is compatible with other task
representations, such as PDDL [29], which incorporates ac-
tion preconditions and postconditions in the problem setting
and has recently been explored with LLMs [24, 39].

REFERENCES
[1] The ”Poetics” of Everyday Life: Grounding Resources and Mech-

anisms for Artificial Agents. https://cordis.europa.eu/
project/id/215843. Accessed: 2023-09-28.

[2] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by
jointly learning to align and translate. arXiv preprint arXiv:1409.0473,
2014.

[3] M. Beetz, U. Klank, I. Kresse, A. Maldonado, L. Mösenlechner,
D. Pangercic, T. Rühr, and M. Tenorth. Robotic roommates making
pancakes. In 2011 11th IEEE-RAS International Conference on
Humanoid Robots, pages 529–536. IEEE, 2011.

[4] Y. Bengio, R. Ducharme, and P. Vincent. A neural probabilistic
language model. Advances in neural information processing systems,
13, 2000.

[5] M. Berg, D. Bayazit, R. Mathew, A. Rotter-Aboyoun, E. Pavlick, and
S. Tellex. Grounding language to landmarks in arbitrary outdoor
environments. In 2020 IEEE International Conference on Robotics
and Automation (ICRA), pages 208–215. IEEE, 2020.

[6] M. Bollini, S. Tellex, T. Thompson, N. Roy, and D. Rus. Interpreting
and executing recipes with a cooking robot. In Experimental Robotics:
The 13th International Symposium on Experimental Robotics, pages
481–495. Springer, 2013.

[7] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, et al. Language mod-
els are few-shot learners. Advances in neural information processing
systems, 33:1877–1901, 2020.

[8] B. Calli, A. Singh, A. Walsman, S. Srinivasa, P. Abbeel, and A. M.
Dollar. The ycb object and model set: Towards common benchmarks
for manipulation research. In 2015 International Conference on
Advanced Robotics (ICAR), pages 510–517, 2015.

[9] Y. Chen, J. Arkin, Y. Zhang, N. Roy, and C. Fan. Autotamp:
Autoregressive task and motion planning with llms as translators and
checkers. arXiv preprint arXiv:2306.06531, 2023.

[10] Y. Chen, R. Gandhi, Y. Zhang, and C. Fan. Nl2tl: Transforming natural
languages to temporal logics using large language models. arXiv
preprint arXiv:2305.07766, 2023.

[11] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training
of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

[12] D. Driess, F. Xia, M. S. Sajjadi, C. Lynch, A. Chowdhery, B. Ichter,
A. Wahid, J. Tompson, Q. Vuong, T. Yu, et al. Palm-e: An embodied
multimodal language model. arXiv preprint arXiv:2303.03378, 2023.

[13] G. Fainekos, H. Kress-Gazit, and G. Pappas. Temporal logic motion
planning for mobile robots. In Proceedings of the IEEE International
Conference on Robotics and Automation, pages 2020–2025, 2005.

[14] N. Gopalan, D. Arumugam, L. L. Wong, and S. Tellex. Sequence-to-
sequence language grounding of non-markovian task specifications. In
Robotics: Science and Systems, volume 2018, 2018.

[15] J. Gu, Z. Lu, H. Li, and V. O. Li. Incorporating copying mechanism
in sequence-to-sequence learning. arXiv preprint arXiv:1603.06393,
2016.

[16] E. Hsiung, H. Mehta, J. Chu, X. Liu, R. Patel, S. Tellex, and
G. Konidaris. Generalizing to new domains by mapping natural
language to lifted ltl. In 2022 International Conference on Robotics
and Automation (ICRA), pages 3624–3630. IEEE, 2022.

[17] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch. Language models
as zero-shot planners: Extracting actionable knowledge for embodied
agents. In International Conference on Machine Learning, pages
9118–9147. PMLR, 2022.

[18] W. Huang, F. Xia, T. Xiao, H. Chan, J. Liang, P. Florence, A. Zeng,
J. Tompson, I. Mordatch, Y. Chebotar, et al. Inner monologue:
Embodied reasoning through planning with language models. arXiv
preprint arXiv:2207.05608, 2022.

[19] B. Ichter, A. Brohan, Y. Chebotar, C. Finn, K. Hausman, A. Herzog,
D. Ho, J. Ibarz, A. Irpan, E. Jang, R. Julian, D. Kalashnikov, S. Levine,
Y. Lu, C. Parada, K. Rao, P. Sermanet, A. T. Toshev, V. Vanhoucke,
F. Xia, T. Xiao, P. Xu, M. Yan, N. Brown, M. Ahn, O. Cortes,
N. Sievers, C. Tan, S. Xu, D. Reyes, J. Rettinghouse, J. Quiambao,
P. Pastor, L. Luu, K.-H. Lee, Y. Kuang, S. Jesmonth, N. J. Joshi,
K. Jeffrey, R. J. Ruano, J. Hsu, K. Gopalakrishnan, B. David, A. Zeng,
and C. K. Fu. Do as i can, not as i say: Grounding language in robotic
affordances. In Proceedings of the Conference on Robot Learning
(CoRL), volume 205, pages 287–318, 2023.

[20] Y. Jiang, K. Zaporojets, J. Deleu, T. Demeester, and C. Develder.
Recipe instruction semantics corpus (RISeC): Resolving semantic
structure and zero anaphora in recipes. In Proceedings of the

Conference of the Asia-Pacific Chapter of the Association for Compu-
tational Linguistics and the International Joint Conference on Natural
Language Processing, pages 821–826, 2020.

[21] E. Kolve, R. Mottaghi, W. Han, E. VanderBilt, L. Weihs, A. Herrasti,
M. Deitke, K. Ehsani, D. Gordon, Y. Zhu, et al. Ai2-THOR: An inter-
active 3d environment for visual AI. arXiv preprint arXiv:1712.05474,
2017.

[22] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas. Temporal-logic-
based reactive mission and motion planning. IEEE transactions on
robotics, 25(6):1370–1381, 2009.

[23] K. Lin, C. Agia, T. Migimatsu, M. Pavone, and J. Bohg. Text2motion:
From natural language instructions to feasible plans. arXiv preprint
arXiv:2303.12153, 2023.

[24] B. Liu, Y. Jiang, X. Zhang, Q. Liu, S. Zhang, J. Biswas, and P. Stone.
Llm+p: Empowering large language models with optimal planning
proficiency, 2023.

[25] J. X. Liu, Z. Yang, I. Idrees, S. Liang, B. Schornstein, S. Tellex, and
A. Shah. Lang2ltl: Translating natural language commands to temporal
robot task specification. arXiv preprint arXiv:2302.11649, 2023.

[26] A. Madaan, S. Zhou, U. Alon, Y. Yang, and G. Neubig. Language
models of code are few-shot commonsense learners. arXiv preprint
arXiv:2210.07128, 2022.

[27] J. Malmaud, E. Wagner, N. Chang, and K. Murphy. Cooking with
semantics. In Proceedings of the ACL 2014 Workshop on Semantic
Parsing, pages 33–38, 2014.

[28] J. Marin, A. Biswas, F. Ofli, N. Hynes, A. Salvador, Y. Aytar, I. Weber,
and A. Torralba. Recipe1m+: A dataset for learning cross-modal
embeddings for cooking recipes and food images. IEEE Trans. Pattern
Anal. Mach. Intell., 2019.

[29] D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram,
M. Veloso, D. Weld, and D. Wilkins. Pddl-the planning domain
definition language. 1998.

[30] C. Menghi, C. Tsigkanos, P. Pelliccione, C. Ghezzi, and T. Berger.
Specification patterns for robotic missions. IEEE Transactions on
Software Engineering, 47(10):2208–2224, 2019.

[31] S. Mohammadinejad, J. Thomason, and J. V. Deshmukh. Interactive
learning from natural language and demonstrations using signal tem-
poral logic. arXiv preprint arXiv:2207.00627, 2022.

[32] Moley Robotics. Moley kitchen. URL https://www.moley.
com/moley-kitchen/. Accessed: 2023-05-29.

[33] J. Pan, G. Chou, and D. Berenson. Data-efficient learning of natural
language to linear temporal logic translators for robot task specifica-
tion. arXiv preprint arXiv:2303.08006, 2023.

[34] D. P. Papadopoulos, E. Mora, N. Chepurko, K. W. Huang, F. Ofli,
and A. Torralba. Learning program representations for food images
and cooking recipes. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 16559–16569, 2022.

[35] K. Pastra and Y. Aloimonos. The minimalist grammar of action. Philo-
sophical Transactions of the Royal Society B: Biological Sciences, 367
(1585):103–117, 2012.

[36] R. Patel, R. Pavlick, and S. Tellex. Learning to ground language to
temporal logical form. In NAACL, 2019.

[37] R. Patel, E. Pavlick, and S. Tellex. Grounding language to non-
markovian tasks with no supervision of task specifications. In
Robotics: Science and Systems, volume 2020, 2020.

[38] A. Pnueli. The temporal logic of programs. In 18th Annual Symposium
on Foundations of Computer Science, pages 46–57. ieee, 1977.

[39] T. Silver, S. Dan, K. Srinivas, J. B. Tenenbaum, L. P. Kaelbling, and
M. Katz. Generalized planning in pddl domains with pretrained large
language models. arXiv preprint arXiv:2305.11014, 2023.

[40] I. Singh, V. Blukis, A. Mousavian, A. Goyal, D. Xu, J. Tremblay,
D. Fox, J. Thomason, and A. Garg. Progprompt: Generating situated
robot task plans using large language models, 2022.

[41] S. L. Smith, J. Tumova, C. Belta, and D. Rus. Optimal path planning
for surveillance with temporal-logic constraints. The International
Journal of Robotics Research, 30(14):1695–1708, 2011.

[42] A. Srivastava, A. Rastogi, A. Rao, A. A. M. Shoeb, A. Abid, A. Fisch,
A. R. Brown, A. Santoro, A. Gupta, A. Garriga-Alonso, et al. Beyond
the imitation game: Quantifying and extrapolating the capabilities of
language models. arXiv preprint arXiv:2206.04615, 2022.

[43] P. Stenetorp, S. Pyysalo, G. Topić, T. Ohta, S. Ananiadou, and
J. Tsujii. brat: a web-based tool for NLP-assisted text annotation. In
Proceedings of the Demonstrations Session at EACL 2012, Avignon,
France, April 2012. Association for Computational Linguistics.

[44] S. Vemprala, R. Bonatti, A. Bucker, and A. Kapoor. Chatgpt for

https://cordis.europa.eu/project/id/215843
https://cordis.europa.eu/project/id/215843
https://www.moley.com/moley-kitchen/
https://www.moley.com/moley-kitchen/

robotics: Design principles and model abilities. Microsoft Auton. Syst.
Robot. Res, 2:20, 2023.

[45] C. Wang, C. Ross, Y.-L. Kuo, B. Katz, and A. Barbu. Learning
a natural-language to ltl executable semantic parser for grounded
robotics. In Conference on Robot Learning, pages 1706–1718, 2021.

[46] H. Wang, G. Gonzalez-Pumariega, Y. Sharma, and S. Choudhury.
Demo2code: From summarizing demonstrations to synthesizing code
via extended chain-of-thought, 2023.

[47] J. Wu, R. Antonova, A. Kan, M. Lepert, A. Zeng, S. Song, J. Bohg,
S. Rusinkiewicz, and T. Funkhouser. Tidybot: Personalized robot as-

sistance with large language models. arXiv preprint arXiv:2305.05658,
2023.

[48] Y. Yang, Y. Li, C. Fermuller, and Y. Aloimonos. Robot learning
manipulation action plans by” watching” unconstrained videos from
the world wide web. In Proceedings of the AAAI conference on
artificial intelligence, volume 29, 2015.

[49] A. Zeng, A. Wong, S. Welker, K. Choromanski, F. Tombari, A. Purohit,
M. Ryoo, V. Sindhwani, J. Lee, V. Vanhoucke, et al. Socratic models:
Composing zero-shot multimodal reasoning with language. arXiv
preprint arXiv:2204.00598, 2022.

	I INTRODUCTION
	II RELATED WORK
	III PRELIMINARIES
	III-A Linear Temporal Logic
	III-B Large Language Models

	IV TRANSLATING COOKING RECIPES TO LTL FORMULAE
	IV-A Problem Statement
	IV-B System Architecture
	IV-C Semantic Parsing and Data Annotation
	IV-D Reduction to Primitive Actions
	IV-E LTL Translation

	V EVALUATION
	V-A Ablation Study
	V-B Results & Discussion
	V-C Demonstration in AI2-THOR

	VI Limitations & Future Work

